Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 127503    DOI: 10.1088/1674-1056/26/12/127503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modeling of LiFePO4 battery open circuit voltage hysteresis based on recursive discrete Preisach model

Wei-Yi Sun(孙维毅)1, Hai-Tao Min(闵海涛)1, Dong-Ni Guo(郭冬妮)2, Yuan-Bin Yu(于远彬)1
1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
2. China FAW Group Corporation R & D Center, Changchun 130011, China
Abstract  This paper focuses on the modeling of LiFePO4 battery open circuit voltage (OCV) hysteresis. There exists obvious hysteresis in LiFePO4 battery OCV, which makes it complicated to model the LiFePO4 battery. In this paper, the recursive discrete Preisach model (RDPM) is applied to the modeling of LiFePO4 battery OCV hysteresis. The theory of RDPM is illustrated in detail and the RDPM on LiFePO4 battery OCV hysteresis modeling is verified in experiment. The robust of RDPM under different working conditions are also demonstrated in simulation and experiment. The simulation and experimental results show that the proposed method can significantly improve the accuracy of LiFePO4 battery OCV hysteresis modeling when the battery OCV characteristic changes, which conduces to the online state estimation of LiFePO4 battery.
Keywords:  hysteresis      lithium-ion batteries      modeling  
Received:  18 June 2017      Revised:  04 September 2017      Accepted manuscript online: 
PACS:  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  82.47.Aa (Lithium-ion batteries)  
  47.50.Cd (Modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51107052).
Corresponding Authors:  Yuan-Bin Yu     E-mail:  yyb@jlu.edu.cn

Cite this article: 

Wei-Yi Sun(孙维毅), Hai-Tao Min(闵海涛), Dong-Ni Guo(郭冬妮), Yuan-Bin Yu(于远彬) Modeling of LiFePO4 battery open circuit voltage hysteresis based on recursive discrete Preisach model 2017 Chin. Phys. B 26 127503

[1] Wang D, Guan, X H, Wu J, Li P, Zan P and Xu H 2016 IEEE Trans. Smart Grid 7 1762
[2] Gan L, Ufuk T and Steven H L 2013 IEEE T Power Syst. 28 940
[3] Pellegrino and Gianmario 2013 IEEE T. Ind. Electron. 59 803
[4] Ansean D, Gonzalez M, Garcia M V 2015 IEEE T Ind. Appl. 2 1855
[5] Yu Z H, Tian J R and Song Y R 2014 Chin. Phys. B 23 094206
[6] Liu G Q and Ying H P 2014 Chin. Phys. B 23 050502
[7] Zhao S M and Zhuang P 2014 Chin. Phys. B 23 054203
[8] Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y and Xiao R J 2016 Chin. Phys. B 25 018212
[9] Jiang Y H, Ai L J, Ming C Y, Du S L and Li S G 2017 Acta Phys. Sin. 66 118202(in Chinese)
[10] Huang L L and Jian Y 2015 Acta Phys. Sin. 64 108202(in Chinese)
[11] Kasavajjula U S, Wang C and Arcea P E 2008 J. Electrochem. Soc. 155 866
[12] Plett G L 2004 J. Power Sources 134 262
[13] Baronti F, Zamboni W, Femia N and Roncella R 2013 IECON 2013-39th Annual Conference on IEEE Industrial Electronics Society, 2013, Vienna, Austria, p. 6726
[14] Huria T, Ludovici G and Lutzemberger G 2014 J. Power Sources 249 92
[15] Verbrugge M and Tate E 2004 J. Power Sources 126 236
[16] Thele M 2008 J. Power Sources 175 635
[17] Kim J, Seo G S and Chun C 2012 IEEE International Electric Vehicle Conference (IEVC), 2012 p. 1
[18] Windarko N A and Choi J 2009 31rt International Telecommunications Energy Conference, 2009, p. 1
[19] Windarko N A and Choi J 2010 J. Power Electron. 10 181
[20] Trapanese M, Franzitta V and Viola A 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2013, p. 2773
[21] Preisach F 1935 Z. Phys. 94 277
[22] Tang X D 2008 International Conference on Prognostics and Health Management, 2008, p. 1
[23] Tjandra R 2014 Transportation Electrification Conference and Expo (ITEC), 2014, p. 1
[24] Baronti F, Femia N and Saletti R 2015 Journal of Energy Storage 4 51
[25] Zhu L T, Sun Z C, Dai H F and Wei X Z 2015 J. Appl. Energy 155 91
[26] Mayergoyz I D 1986 Phys. Rev. Lett. 22 603
[27] Ruderman M 2013 J. Magn. Magn. Mater. 348 22
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[5] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[6] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[7] Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise
Yi-Wei Li(李毅伟), Peng-Fei Xu(许鹏飞), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(5): 050501.
[8] Anti-function solution of uniaxial anisotropic Stoner-Wohlfarth model
Kun Zheng(郑坤), Yu Miao(缪宇), Tong Li(李通), Shuang-Long Yang(杨双龙), Li Xi(席力), Yang Yang(杨洋), Dun Zhao(赵敦), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2022, 31(4): 040202.
[9] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[10] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[11] Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Zong-Qiang Ma(马宗强), De-Jun Sun(孙德军), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 090201.
[12] An improved model of damage depth of shock-melted metal in microspall under triangular wave loading
Wen-Bin Liu(刘文斌), An-Min He(何安民), Kun Wang(王昆), Jian-Ting Xin(辛建婷), Jian-Li Shao(邵建立), Nan-Sheng Liu(刘难生), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 096202.
[13] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[14] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[15] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
No Suggested Reading articles found!