Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 027202    DOI: 10.1088/1674-1056/23/2/027202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic band gap and transport in graphene superlattice with a Gaussian profile potential voltage

Zhang Yu-Ping (张玉萍), Yin Yi-Heng (尹贻恒), Lü Huan-Huan (吕欢欢), Zhang Hui-Yun (张会云)
Qingdao Key Laboratory of Terahertz Technology, College of Science, Shandong University of Science and Technology, Qingdao 266510, China
Abstract  We study the electronic properties for the graphene-based one-dimensional superlattices, whose potential voltages vary according to the envelope of a Gaussian function. It is found that an unusual Dirac point exists and its location is exactly associated with a zero-averaged wave number (zero-k) gap. This zero-k gap is less sensitive to incident angle and lattice constants, properties opposing those of Bragg gap. The defect mode appearing inside the zero-k gap has an effect on transmission, conductance, and shot noise, which will be useful for further investigation.
Keywords:  graphene superlattice      Gaussian profile      energy band  
Received:  09 August 2013      Revised:  29 October 2013      Accepted manuscript online: 
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61001018), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2011FM009 and ZR2012FM011), the Research Fund of Shandong University of Science and Technology, China (Grant Nos. 2010KYJQ103 and 2012KYTD103), the Project of Shandong Province Higher Educational Science and Technology Program, China (Grant No. J11LG20), the Qingdao Municipal Science & Technology Project, China (Grant No. 11-2-4-4-(8)-jch), the Qingdao Municipal Economic and Technical Development Zone Science and Technology Project, China (Grant No. 2013-1-64), and the Shandong University of Science and Technology Foundation, China (Grant No. YC130220).
Corresponding Authors:  Zhang Yu-Ping     E-mail:  sdust_thz@163.com
About author:  72.10.-d; 73.20.At; 73.23.-b; 73.22.-f

Cite this article: 

Zhang Yu-Ping (张玉萍), Yin Yi-Heng (尹贻恒), Lü Huan-Huan (吕欢欢), Zhang Hui-Yun (张会云) Electronic band gap and transport in graphene superlattice with a Gaussian profile potential voltage 2014 Chin. Phys. B 23 027202

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Sun L F, Dong L M and Fang C 2013 Chin. Phys. B 22 047203
[4] Sun L F, Dong L M, Wu Z F and Fang C 2013 Chin. Phys. B 22 077201
[5] Miao F, Wijeratne S, Zhang Y, Coskun U C, Bao W and Lau C N 2007 Science 317 1530
[6] Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M and Shen Y R 2008 Science 320 206
[7] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[8] Purewal M S, Zhang Y and Kim P 2006 Phys. Status Solidi B 243 3418
[9] Kuzmenko A B, van Heumen E, Carbone F and van der Marel D 2008 Phys. Rev. Lett. 100 117401
[10] Bai C and Zhang X 2007 Phys. Rev. B 76 075430
[11] Park C H, Yang L, Son Y W, Cohen M L and Louie S G 2008 Nat. Phys. 4 213
[12] Barbier M, Peeters F M, Vasilopoulos P and Pereira J M Jr 2008 Phys. Rev. B 77 115446
[13] Zhang H Y, Zhang Y P, Gao Y and Yin Y H 2012 Chin. Phys. Lett. 29 128401
[14] Ramezani Masir M, Vasilopoulos P, Matulis A and Peeters F M 2008 Phys. Rev. B 77 235443
[15] Ghosh S and Sharma M 2009 J. Phys.: Condens. Matter 21 292204
[16] Wang S X, Li Z W, Liu J J and Li Y X 2011 Chin. Phys. B 20 077305
[17] Wang L G and Zhu S Y 2010 Phys. Rev. B 81 205444
[18] Wang L G and Chen X 2011 J. Appl. Phys. 109 033710
[19] Guo X X, Liu D and Li Y X 2011 Appl. Phys. Lett. 98 242101
[20] Zhao P L and Chen X 2011 Appl. Phys. Lett. 99 182108
[21] Ma T X, Liang C, Wang L G and Lin H Q 2012 Appl. Phys. Lett. 100 252402
[22] Zhang Y P, Yin Y H, Liu M, Wu Z X, Shen D L, Wang C L and Zhang H Y 2013 J. Optoelectroni. Laser 24 190
[23] Yan W X 2013 Chin. Phys. Lett. 30 047202
[24] Yu X X, Xie Y E, Ou Y T and Chen Y P 2012 Chin. Phys. B 21 107202
[25] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[26] Tworzydlo J, Trauzettel B, Titov M, Rycerz A and Beenakker C W J 2006 Phys. Rev. Lett. 96 246802
[1] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[2] Improvement of memory characteristics by employing a charge trapping layer with combining bent and flat energy bands
Zhen-Jie Tang(汤振杰), Rong Li(李荣), Xi-Wei Zhang(张希威). Chin. Phys. B, 2020, 29(4): 047701.
[3] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[4] One-dimensional method of investigating the localized states in armchair graphene-like nanoribbons with defects
Yang Xie(谢阳), Zhi-Jian Hu(胡智健), Wen-Hao Ding(丁文浩), Xiao-Long Lü(吕小龙), Hang Xie(谢航). Chin. Phys. B, 2017, 26(12): 127310.
[5] Electronic properties and topological phases of ThXY (X=Pb, Au, Pt and Y= Sb, Bi, Sn) compounds
Zahra Nourbakhsh, Aminollah Vaez. Chin. Phys. B, 2016, 25(3): 037101.
[6] Novel photoluminescence properties of InAlO3(ZnO)m superlattice nanowires
Liu Xin(刘欣), Huang Dong-Liang(黄东亮), Wu Li-Li(武立立), Zhang Xi-Tian(张喜田), and Zhang Wei-Guang(张伟光) . Chin. Phys. B, 2011, 20(7): 078101.
[7] First-principle calculation on the defect energy level of carbon vacancy in 4H–SiC
Jia Ren-Xu(贾仁需), Zhang Yu-Ming(张玉明), and Zhang Yi-Men(张义门). Chin. Phys. B, 2010, 19(10): 107105.
[8] Electronic structure of hexagonal quantum-disc clusters
Wang Li-Min (王立民), Luo Ying (罗莹), Ma Ben-Kun (马本堃), Liu Cheng-Shi (刘承师). Chin. Phys. B, 2002, 11(8): 812-816.
No Suggested Reading articles found!