Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 036105    DOI: 10.1088/1674-1056/20/3/036105
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular dynamics study of helium bubble pressure in titanium

Zhang Bao-Ling(张宝玲), Wang Jun(汪俊), and Hou Qing(侯氢)
Key Laboratory for Radiation Physics and Technology (Sichuan University), Minister Education; and Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
Abstract  In this paper, the pressure state of the helium bubble in titanium is simulated by a molecular dynamics (MD) method. First, the possible helium/vacancy ratio is determined according to therelation between the bubble pressure and helium/vacancy ratio; then the dependences of the helium bubble pressure on the bubble radius at different temperatures are studied. It is shown that the product of the bubble pressure and the radius is approximately a constant, a result justifying the pressure-radius relation predicted by thermodynamics-based theory for gas bubble. Furthermore, a state equation of the helium bubble is established based on the MD calculations. Comparison between the results obtained by the state equation and corresponding experimental data shows that the state equation can describe reasonably the state of helium bubble and thus could be used for Monte Carlo simulations of the evolution of helium bubble in metals.
Keywords:  helium bubble pressure      molecular dynamics simulation      state equation      titanium  
Received:  29 June 2010      Revised:  08 October 2010      Accepted manuscript online: 
PACS:  61.72.J- (Point defects and defect clusters)  
  61.82.-d (Radiation effects on specific materials)  
  64.30.Jk (Equations of state of nonmetals)  
  62.50.-p (High-pressure effects in solids and liquids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10775101) and National Magnetic Confinement Fusion Program of China (Grant No. 2009GB106004).

Cite this article: 

Zhang Bao-Ling(张宝玲), Wang Jun(汪俊), and Hou Qing(侯氢) Molecular dynamics study of helium bubble pressure in titanium 2011 Chin. Phys. B 20 036105

1 Phys. Rev. B Zu X T, Yang L, Gao F, Peng S M, Heinisch H L, Long X G and Kurtz R J 2009 80 054104 2 J. Nucl. Mater Sharafat S, Takahashi A, Nagasawa K and Ghoniem N 2009 389 10 3 Phys. Rev. B Ortiz C J, Caturla M J, Fu C C and Willaime F 2007 75 100102 4 Appl. Phys. Lett Henriksson K O E, Nordlund K, Krasheninnikov A and Keinonen J 2005 87 163113 5 J. Nucl. Mater Caturla M J and Ortiz C J 2007 362 141 6 Appl. Phys. Lett Yang L, Zu X T, Xiao H Y, Gao F, Heinisch H L, Kurtz R J and Liu K Z 2006 88 091915 7 Acta Phys. Sin Chen P H, Shen L, Ao B Y, Li R and Li J 2009 58 2605 8 Acta Phys. Sin Xie Z, Hou Q, Wang J, Sun T Y, Long X G and Luo S Z 2008 57 5159 9 J. Nucl. Mater Evans J H 2004 334 40 10 J. Appl. Phys Hou Q, Zhou Y L, Wang J and Deng A H 2010 107 084901 11 Modelling Simul. Mater. Sci. Eng Suzudo T, Kaburaki H, Itakura M and Wakai E 2008 16 055003 12 Phys. Rev. B Ahuja R, Dubrovinsky L, Dubrovinskaia N, Osorio Guillen J M, Mattesini M, Johansson B and Bihan T L 2004 69 184102 13 Phys. Rev. B Zhang J Z, Zhao Y S, Hixson R S and III G T G 2008 78 054119 14 Chin. Phys Ma G J, Liu X L, Zhang H F, Wu H C and Peng L P 2007 16 1105 15 Acta Phys. Sin Chen M, Wang J and Hou Q 2009 58 1149 16 Phys. Rev. B Hou Q, Hou M, Bardotti L, Pr'evel B, M'elinon P and Perez A 2000 62 2825 17 J. Appl. Phys Wang J, Hou Q, Sun T Y, Long X G, Wu X C and Luo S Z 2007 102 093510 18 Phys. Rev. B Cleri F and Rosato V 1993 48 22 19 Donnelly S E and Evans J H 1991 Fundamental Aspects of Inert Gases in Solids (New York: Plenum Press) p3 20 Chin. Phys. Lett Wang J, Hou Q, Sun T Y, Wu Z C, Long X G, Wu X C and Luo S Z 2006 23 1666 21 Radiation Effect Donnelly S E 1985 90 1 22 Philos. Mag. A Wolfer W G 1988 58 285 23 Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (New York: Clarendon Press Oxford) 46 24 Cui W G 1990 Surface and Interface (Beijing: TsingHua University Press) 7 25 The Chinese Journal of Nonferrous Metals Han X L, Wang Q, Sun D L and Zhang H X 2008 18 523 26 Phys. Rev. B Mills R L, Lievenberg D H and Bronson J C 1980 21 5137 27 Timmerhaus K D and Barber M S 1979 High Pressure Science and Technology (New York: Plenum Press) p408 28 Bridgman P W 1964 Collected Experimental Papers (Cambridge: Harvard University Press) p1733 endfootnotesize
[1] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[5] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[6] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[10] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[11] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[12] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[13] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!