Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 117301    DOI: 10.1088/1674-1056/26/11/117301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Band structure and edge states of star-like zigzag graphene nanoribbons

Hong Liu(刘红)
Physics Department of Nanjing Normal University, Nanjing 210023, China
Abstract  Connecting three zigzag graphene nanoribbons (ZGNRs) together through the sp3 hybrid bonds forms a star-like ZGNR (S-ZGNR). Its band structure shows that there are four edge states at k=0.5, in which the three electrons distribute at three outside edge sites, and the last electron is shared equally (50%) by two sites near the central site. The lowest conductance step in the valley is 2, two times higher than that of monolayer ZGNR (M-ZGNR). Furthermore, in one quasi-three-dimensional hexagonal lattice built, both of the Dirac points and the zero-energy states appear in the band structure along the z-axis for the fixed zero k-point in the x-y plane. In addition, it is an insulator in the x-y plane due to band gap 4 eV, however, for any k-point in the x-y plane the zero-energy states always exist at kz=0.5.
Keywords:  zigzag graphene nanoribbon      band structure      edge state  
Received:  10 March 2017      Revised:  06 August 2017      Accepted manuscript online: 
PACS:  73.22.Pr (Electronic structure of graphene)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10947004) and the Jiangsu Government Scholarship for Overseas Studies, China.
Corresponding Authors:  Hong Liu     E-mail:  liuhong3@njnu.edu.cn

Cite this article: 

Hong Liu(刘红) Band structure and edge states of star-like zigzag graphene nanoribbons 2017 Chin. Phys. B 26 117301

[1] Iijima S 1991 Nature 354 56
[2] Novoselov K S, Geim A K and Morozov S V 2005 Nature 438 197
[3] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571
[4] Williams J R, DiCarlo L and Marcus C M 2007 Science 317 638
[5] Ezawa M 2006 Phys. Rev. B 73 045432
[6] Fujita M, Wakabayashi K, Akada K and Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920
[7] Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
[8] Yang L, Cohen M L and Louie S G 2008 Phys. Rev. Lett. 101 186401
[9] Wakayabashi K, Fujita M, Ajiki H and Sigrist M 1999 Phys. Rev. B 59 8271
[10] Yao W, Yang S and Niu Q 2009 Phys. Rev. Lett. 102 096801
[11] Liu H, Hu B and Liu N 2016 Phys. Lett. A 380 3738
[12] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[13] Yang Y, Xu Z, Sheng L, Wang B G, Xing D Y and Sheng D N 2011 Phys. Rev. Lett. 107 066602
[14] Li H, Sheng L and Xing D Y 2012 Phys. Rev. Lett. 108 196806
[15] Sheng Li 2014 Progress in Physics 34 1(in Chinese)
[16] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[17] Knez I, Du R R and Sullivan G 2011 Phys. Rev. Lett. 107 136603
[18] Sheng L 2013 Progress in Physics 34 10
[19] Tang P, Yan B, Cao W, Wu S C, Felser C and Duan W 2014 Phys. Rev. B 89 041409(R)
[20] Murakami S 2006 Phys. Rev. Lett. 97 236805
[21] Weng H, Dai X and Fang Z 2014 Phys. Rev. X 4 011002
[22] Wu R, Ma J Z, Nie S M, Zhao L X, Huang X, Yin J X, Fu B B, Richard P, Chen G F, Fang Z, Dai X, Weng H M, Qian T, Ding H and Pan S H 2016 Phys. Rev. X 6 021017
[23] Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X and Kawazoe Y 2015 Phys. Rev. B 92 045108
[24] Kubo R 1957 J. Phys. Soc. Jpn. 12 570
[25] Nardelli M B 1999 Phys. Rev. B 60 7828
[26] Ferreira M S, Dargam T G, Muniz R B and Latge A 2000 Phys. Rev. B 62 16040
[27] Ferreira M S, Dargam T G, Muniz R B and Latge A 2001 Phys. Rev. B 63 245111
[28] Nardelli M B and Bernholc J 1999 Phys. Rev. B 60 16338
[1] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[2] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[3] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[4] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[5] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[6] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[7] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[8] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[9] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[10] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[11] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[12] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[13] Topological phases and type-II edge state in two-leg-coupled Su-Schrieffer-Heeger chains
Tianqi Luo(罗天琦), Xin Guan(关欣), Jingtao Fan(樊景涛), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 014208.
[14] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[15] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
No Suggested Reading articles found!