Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 114702    DOI: 10.1088/1674-1056/26/11/114702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Aerodynamic measurement of a large aircraft modelin hypersonic flow

Bao-Qing Meng(孟宝清)1,2, Gui-Lai Han(韩桂来)1, De-Liang Zhang(张德良)1,2, Zong-Lin Jiang(姜宗林)1,2
1. State Key Laboratory of High-temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Accurate aerodynamic measurements in the hypersonic flow of large aircraft models in tunnels have practical significance, but pose a significant challenge. Novel aerodynamic force measurement methods have been proposed,but lack theoretical support. The forms of the force signals techniques for signal processing and calculation of aerodynamics are especially problematic. A theoretical study is conducted to investigate the dynamic properties based on models of the draw-rod system and slender rods. The results indicate that the inertia item can be neglected in the rod governing equation; further, the solutions show that the signals of each rod are a combination of aerodynamic signals (with a constant value) and sine signals, which can be verified by experimental shock tunnel results. Signal processing and aerodynamics calculation techniques are also found to be achievable via the flat part of the signals.
Keywords:  hypersonic      aerodynamic measurement      theoretical study      vibration  
Received:  14 April 2017      Revised:  11 June 2017      Accepted manuscript online: 
PACS:  47.40.Ki (Supersonic and hypersonic flows)  
  46.40.-f (Vibrations and mechanical waves)  
  46.80.+j (Measurement methods and techniques in continuum mechanics of solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472281 and 11532014).
Corresponding Authors:  Gui-Lai Han     E-mail:  hanguilai@imech.ac.cn

Cite this article: 

Bao-Qing Meng(孟宝清), Gui-Lai Han(韩桂来), De-Liang Zhang(张德良), Zong-Lin Jiang(姜宗林) Aerodynamic measurement of a large aircraft modelin hypersonic flow 2017 Chin. Phys. B 26 114702

[1] Wu Z N, Bai C Y, Li J, Chen Z J, Ji S X, Wang D, Wang W B, Xu Y Z and Yao Y 2015 Acta Aeronaut. Astronaut. Sin. 36 1(in Chinese)
[2] Wang D P, Zhao Y X, Xia Z X, Wang Q H and Luo Z B 2012 Chin. Phys. Lett. 29 084702
[3] Zhang Q H, Yi S H, Zhu Y Z, Chen Z and Wu Y 2013 Chin. Phys. Lett. 30 044701
[4] Holden M, KollyJ and Chadwick K 1995 AIAA 33 rd Aerospace Sciences Meeting and ExhibitPaper (Reno, NV January 9-12, 1995) 1995-0291
[5] Holden M and Parker R A 2002 Advanced Hypersonic Test Facilities(Reston, Virginia:AIAA Publication) p. 6040
[6] Yu H R, Esser B, Lenartz M and Grönig H 1992 Shock Waves 2 4
[7] Erdos J, Calleja J and Tamagno J 1994 AIAA 18 th AIAA Aerospace Ground Testing ConferencePaper (Colorado Springs, CO June 20-23, 1994) 1994-2524
[8] Jiang Z L and Yu H R 2014 AIAA 52 nd Aerospace Sciences Meeting Paper (National Harbor, Maryland 13-17 January 2014) 2014-1012
[9] Buckley M and Sanford D 1998 AIAA 20 th AIAA Advanced Measurement and Ground Testing Technology Conference (Albuquerque, NM 15-18 June 1998) 1998-2883
[10] Smith C E 1966 J. Fluid Mech. 24 4
[11] Saito T andTakayama K 1999 Shock Waves 9 2
[12] Mouronval A S and Hadjadj A 2005 J. Propul. Power. 21 2
[13] Mouronval A S, Hadjadj A and Kudryavtsev A N 2003 Shock Waves 12 5
[14] Wang Y P, Hu Z M and Liu Y F 2016 J. AIAA 54 4
[15] Luo C T and Yu B 2012 J. Global. Optim. 52 1
[16] LuoC T, Zhang S LWang C and Jiang Z L 2011 J. Comput. Appl. Math. 236 5
[17] Holden MS Wadhams T P MacLean M and Dufrene A 2015 AIAA 20 th AIAA International Space Planes and Hypersonic Systems and Technologies Conference (Glasgow, Scotland 6-9 July 2015) 2015-366
[18] Tanno H and Komuro T 2005 T. Jpn. Soc. Aeronaut. S. 48 159
[19] Sahoo N, Mahapatra D R, Jagadeesh G, Gopalakrishnan S and Reddy K P J 2007 Measurement 40 93
[20] Satheesh K and Jagadeesh G 2009 Measurement 42 6
[21] Marineau E C 2011 J. Spacecraft. Rockets. 48 4
[22] Smolinski 2007 AIAA 45 th AIAA Aerospace Sciences Meeting and Exhibit (Reno, Nevada 8-11 January 2007) 2007-110
[23] Zhou W J, Ma H D and Bai P 2003 J. Astronaut 24 6
[24] Trivedi and Menezes V 2012 Measurement 45 7
[25] Wang Y P, Liu Y F, Yuan C K et al. 2016 Chin. J. Theor. Appl. Mech. 48 3(in Chinese)
[26] Hank J, Murphy J and Mutzman R 2008 AIAA 15 th AIAA International Space Planes and Hypersonic Systems and Technologies Conference (Dayton, Ohio 28 April-1 May 2008) 2008-2540
[27] Kawamura S, Kino H and Won C 2000 Robotica 18 1
[28] Xiao Y W, Lin Q, Zheng Y Q and Liang B 2010 Chin. J. Aeronaut. 23 4
[29] Ni Z H Vibration Mechanics(Xi'an:Xi'an Jiao Tong University Press) p. 160
[30] Liu T F, Gao F X and Lü W 2001 Mech. Eng. 23 1(in Chinese)
[1] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[2] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[3] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[4] Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources
Qiang Tang(汤强), Pengzhan Liu(刘鹏展), and Shuai Tang(唐帅). Chin. Phys. B, 2022, 31(4): 044301.
[5] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[6] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
[7] Investigation of hypersonic flows through a cavity with sweepback angle in near space using the DSMC method
Guangming Guo(郭广明), Hao Chen(陈浩), Lin Zhu(朱林), and Yixiang Bian(边义祥). Chin. Phys. B, 2021, 30(7): 074701.
[8] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[9] Improved nonlinear parabolized stability equations approach for hypersonic boundary layers
Shaoxian Ma(马绍贤), Yi Duan(段毅), Zhangfeng Huang(黄章峰), and Shiyong Yao(姚世勇). Chin. Phys. B, 2021, 30(5): 054701.
[10] Theoretical analysis and experimental validation of radial cascaded composite ultrasonic transducer
Xiao-Yu Wang(王晓宇), Zhi-Xin Yu(余芷欣), Jing Hu(胡静), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(4): 040701.
[11] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[12] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[13] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[14] Michelson laser interferometer-based vibration noise contribution measurement method for cold atom interferometry gravimeter
Ning Zhang(张宁), Qingqing Hu(胡青青), Qian Wang(王倩), Qingchen Ji(姬清晨), Weijing Zhao(赵伟靖), Rong Wei(魏荣), Yuzhu Wang(王育竹). Chin. Phys. B, 2020, 29(7): 070601.
[15] Vibrational effects on electron momentum distributionsof outer valence orbitals of benzene
Yu Zhang(张钰), Shanshan Niu(牛珊珊), Yaguo Tang(唐亚国), Yichun Wang(王忆纯), Xu Shan(单旭), Xiangjun Chen(陈向军). Chin. Phys. B, 2020, 29(2): 023402.
No Suggested Reading articles found!