Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 114703    DOI: 10.1088/1674-1056/26/11/114703
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Instabilities of thermocapillary-buoyancy convection in open rectangular liquid layers

Huan Jiang(姜欢)1,2, Li Duan(段俐)1,2, Qi Kang(康琦)1,2
1. Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
2. School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

This article presents the experimental investigation on instabilities of thermocapillary-buoyancy convection in the transition process in an open rectangular liquid layer subject to a horizontal temperature gradient. In the experimental run, an infrared thermal imaging system was constructed to observe and record the surface wave of the rectangular liquid layer. It was found that there are distinct convection longitudinal rolls in the flow field in the thermocapillary-buoyancy convection transition process. There are different wave characterizations for liquid layers with different thicknesses. For sufficiently thin layers, oblique hydrothermal waves are observed, which was predicted by the linear-stability analysis of Smith & Davis in 1983. For thicker layers, the surface flow is distinct and intensified, which is because the buoyancy convection plays a dominant role and bulk fluid flow from hot wall to cold wall in the free surface of liquid layers. In addition, the spatiotemporal evolution analysis has been carried out to conclude the rule of the temperature field destabilization in the transition process.

Keywords:  thermocapillary-buoyancy convection      instability      open rectangular liquid layer      spatiotemporal evolution  
Received:  17 May 2017      Revised:  07 July 2017      Accepted manuscript online: 
PACS:  47.55.nb (Capillary and thermocapillary flows)  
  47.20.-k (Flow instabilities)  
  47.27.Cn (Transition to turbulence)  
  44.10.+i (Heat conduction)  
Fund: 

Project supported by the Strategic Priority Research Program on Space Science, Chinese Academy of Sciences:SJ-10 Recoverable Scientific Experiment Satellite (Grant Nos. XDA04020405 and XDA04020202-05), the China Manned Space Engineering program (TG-2), Cooperative Research Project between China and Russia, and the National Natural Science Foundation of China (Grant No. 11372328).

Corresponding Authors:  Li Duan, Qi Kang     E-mail:  duanli@imech.ac.cn;kq@imech.ac.cn

Cite this article: 

Huan Jiang(姜欢), Li Duan(段俐), Qi Kang(康琦) Instabilities of thermocapillary-buoyancy convection in open rectangular liquid layers 2017 Chin. Phys. B 26 114703

[1] Bach C and Schwabea D 2015 Eur. Phys. J. Special Topics 224 319
[2] Smith M K and Davis S H 1983 J. Fluid Mech. 132 119
[3] Smith M K and Davis S H 1983 J. Fluid Mech. 132 145
[4] Parmentier P M, Regnier V C and Lebon G 1993 Int. J. Heat Mass Transfer 36 2417
[5] Priede J and Gunter G 1997 Phys. Rev. E 56 4187
[6] Riley R J and Neitzel G P 1998 J. Fluid Mech. 359 143
[7] Daviaud F and Vince J M 1993 Phys. Rev. E 48 4432
[8] Burguete J, Mukolobwiez N, Daviaud F, Garnier N and Chiffaudel A 2001 Phys. Fluid 13 2773
[9] Ezersky A B, Garcimartín A, Mancini H L and Pérez-García C 1993 Phys. Rev. E 48 4414
[10] Ezersky A B, Garcimartín A, Mancini H L and Pérez-García C 1993 Phys. Rev. E 47 1126
[11] Garcimartín A, Mukolobwiez N and Daviaud F 1997 Phys. Rev. E 56 1699
[12] Pelacho M A and Burguete J 1999 Phys. Rev. E 59 835
[13] Schwabe D, Möller U, Schneider J and Scharmann A 1992 Phys. Fluids A 4 2368
[14] Shevtsova V M, Nepomnyashchy A A, and Legros J C 2003 Phys. Rev. E 67 066308
[15] Kang Q, Duan L and Hu W R 2004 Microgravity Sci. Technol 15 18
[16] Duan L, Kang Q and Hu W R 2008 Chin. Phys. Lett. 25 1347
[17] Zhu P, Zhou B, Duan L and Kang Q 2011 Exp. Therm. Fluid Sci. 35 1444
[18] Zhou X M and Huang H L 2012 Chin. Phys. Lett. 29 74704
[19] Sobac B and Brutin D 2012 Phys. Fluids 24 032103
[20] Brutin D, Sobac B, Rigolle F and Niliot C L 2011 Exp. Therm. Fluid Sci. 35 521
[21] Zhou B, Zhu P, Duan L and Kang Q 2013 Mechanics in Engineering 35 39(in Chinese)
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[4] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[5] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[6] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[7] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[8] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[9] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[10] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[11] Electromagnetic control of the instability in the liquid metal flow over a backward-facing step
Ya-Dong Huang(黄亚冬), Jia-Wei Fu(付佳维), and Long-Miao Chen(陈龙淼). Chin. Phys. B, 2022, 31(12): 124701.
[12] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[13] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[14] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[15] Analytical model for Rayleigh—Taylor instability in conical target conduction region
Zhong-Yuan Zhu(朱仲源), Yun-Xing Liu(刘云星), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(10): 105202.
No Suggested Reading articles found!