Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 106502    DOI: 10.1088/1674-1056/26/10/106502
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Thermal conductivity of carbon nanoring linked graphene sheets:A molecular dynamics investigation

Gang Shi(石刚), Jianwei Zhang(张鉴炜), Yonglv He(贺雍律), Su Ju(鞠苏), Dazhi Jiang(江大志)
Department of Materials Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  

Improving the thermal conduction across graphene sheets is of great importance for their applications in thermal management. In this paper, thermal transport across a hybrid structure formed by two graphene nanoribbons and carbon nanorings (CNRs) was investigated by molecular dynamics simulations. The effects of linker diameter, number, and height on thermal conductivity of the CNRs-graphene hybrid structures were studied respectively, and the CNRs were found effective in transmitting the phonon modes of GNRs. The hybrid structure with 2 linkers showed the highest thermal conductivity of 68.8 W·m-1·K-1. Our work presents important insight into fundamental principles governing the thermal conduction across CNR junctions and provides useful guideline for designing CNR-graphene structure with superior thermal conductivity.

Keywords:  carbon nanorins-graphene hybrid structures      thermal conductivity      molecular dynamics simulation  
Received:  22 June 2017      Revised:  20 July 2017      Accepted manuscript online: 
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  65.80.Ck (Thermal properties of graphene)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11202231) and the Research Project of National University of Defense Technology (Grant No. JC15-01-03).

Corresponding Authors:  Jianwei Zhang, Dazhi Jiang     E-mail:  jwzhang.nudt@gmail.com;jiangdz@nudt.edu.cn

Cite this article: 

Gang Shi(石刚), Jianwei Zhang(张鉴炜), Yonglv He(贺雍律), Su Ju(鞠苏), Dazhi Jiang(江大志) Thermal conductivity of carbon nanoring linked graphene sheets:A molecular dynamics investigation 2017 Chin. Phys. B 26 106502

[1] Zhang G and Zhang Y W 2017 Chin. Phys. B 26 034401
[2] Subrina S, Kotchetkov D and Balandin A A 2010 12 th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, June 2-5, 2010, Las Vegas, USA, p. 5343
[3] Gao Z, Zhang Y, Fu Y, Yuen M and Liu J 2013 Electronic Components & Technology Conference, May 28-31, 2013, Las Vegas, USA, p. 2075
[4] Xin G, Sun H, Hu T, Fard H R, Sun X, Koratkar N, Borca-Tasciuc T and Lian J 2014 Adv. Mater. 26 4521
[5] Yu W, Xie H, Li F, Zhao J and Zhang Z 2013 Appl. Phys. Lett. 103 141913
[6] Balandin A A, Ghosh, S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[7] Liu X, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 12541
[8] Pop E, Varshney V and Roy A K 2012 MRS Bull. 37 1273
[9] Niu J, Li M, Choi W, Dai L and Xia Z 2014 Carbon 67 627
[10] Niu J, Li M and Xi Z 2014 RSC Adv. 4 33848
[11] Yang Z, Zhao Y, Xiao Q, Zhang Y, Jing L, Yan Y and Sun K 2014 ACS Appl. Mater. Interfaces 6 8497
[12] Du F, Yu D, Dai L, Gangul S, Varshne V and Roy A K 2011 Chem. Mater. 23 4810
[13] Zheng Q, Li Z, Yang J and Kim J K 2014 Prog. Mater. Sci. 64 200
[14] Dimitrakakis G K, Tylianakis E and Froudakis G E 2008 Nano Lett. 8 3166
[15] Radoslaw P W and Terzyk A P 2011 Phys. Chem. Chem. Phys. 13 17027
[16] Sun J, Liu H, Chen X, Evans D G, Yang W and Duan X 2013 Adv. Mater. 25 1125
[17] Zhang J, Shi G, Jiang C, Ju S and Jiang D 2015 Small 46 6197
[18] Mullerplathe F 1997 J. Chem. Phys. 106 6082
[19] Zou J H, Ye Z Q and Cao B Y 2016 J. Chem. Phys. 145 134705
[20] Si C, Wang X D, Fan Z, Feng Z H and Cao B Y 2017 Int. J. Heat Mass Transfer 107 450
[21] Sun H 1998 J. Phys. Chem. B 102 7338
[22] Zhang J, Jiang C, Jiang D and Peng H 2014 Phys. Chem. Chem. Phys. 16 4378
[23] Feng Y, Zhu J and Tang D W 2014 Chin. Phys. B 23 083101
[24] YangY L and Lu Y 2014 Chin. Phys. B 23 106501
[25] Xu Z and Buehler M J 2009 Nanotechnology 20 185701
[26] Zhang C, Hao X L,Wang C X, Wei N and Rabczuk T 2017 Sci. Rep. 7 41398
[27] Park J and Prakash V J 2013 Mater. Res. 28 940
[28] Feng D L, Feng Y H, Chen Y, Li W and Zhang X X 2013 Chin. Phys. B 22 016501
[29] Shi J, Dong Y, Fisher T and Ruan X 2015 J. Appl. Phys. 118 044302
[30] Xu L, Wei N, Zheng Y, Fan Z, Wang H Q and Zheng J C 2012 J. Mater. Chem. A 22 1435
[31] Kuang Y, Lindsay L and Huang B 2015 Nano Lett. 15 6121
[32] FengY, Zhu J and Tang D W 2015 Phys. Lett. A 379 382
[33] Yue S, Ouyang T and Hu M 2015 Sci. Rep. 5 15440
[34] Liu D, Yang P, Yuan X, Guo J and Liao N 2015 Phys. Lett. A 379 810
[35] Cao B Y, Yao W J and Ye Z Q 2016 Carbon 96 711
[36] Feng T, Ruan X, Ye Z and Cao B 2015 Phys. Rev. B 91 224301
[37] Yarifard M, Davoodi J and Rafii-Tabar H 2016 Comput. Mater. Sci. 111 247
[38] Varshney V, Patnaik S S, Roy A K, Froudakis G and Farmer B L 2010 ACS Nano 4 1153
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[7] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[15] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
No Suggested Reading articles found!