Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 096103    DOI: 10.1088/1674-1056/25/9/096103
Special Issue: TOPICAL REVIEW — Physical research in liquid crystal
TOPICAL REVIEW—Physical research in liquid crystal Prev   Next  

Thermo- and photo-driven soft actuators based on crosslinked liquid crystalline polymers

Wei Gu(顾伟)1, Jia Wei(韦嘉)1, Yanlei Yu(俞燕蕾)1,2
1. Department of Materials Science, Fudan University, Shanghai 200433, China;
2. State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
Abstract  

Crosslinked liquid crystalline polymers (CLCPs) are a type of promising material that possess both the order of liquid crystals and the properties of polymer networks. The anisotropic deformation of the CLCPs takes place when the mesogens experience order to disorder change in response to external stimuli; therefore, they can be utilized to fabricate smart actuators, which have potential applications in artificial muscles, micro-optomechanical systems, optics, and energy-harvesting fields. In this review the recent development of thermo- and photo-driven soft actuators based on the CLCPs are summarized.

Keywords:  actuators      crosslinked liquid crystalline polymers      deformation  
Received:  16 May 2016      Accepted manuscript online: 
PACS:  61.41.+e (Polymers, elastomers, and plastics)  
  82.50.Hp (Processes caused by visible and UV light)  
  83.80.Xz (Liquid crystals: nematic, cholesteric, smectic, discotic, etc.)  
  61.30.Vx (Polymer liquid crystals)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 21134003, 21273048, 51225304, and 51203023) and Shanghai Outstanding Academic Leader Program, China (Grant No. 15XD1500600).

Corresponding Authors:  Yanlei Yu     E-mail:  ylyu@fudan.edu.cn

Cite this article: 

Wei Gu(顾伟), Jia Wei(韦嘉), Yanlei Yu(俞燕蕾) Thermo- and photo-driven soft actuators based on crosslinked liquid crystalline polymers 2016 Chin. Phys. B 25 096103

[1] Shankar R, Ghosh T K and Spontak R J 2007 Soft Matter 3 1116
[2] Yao S and Zhu Y 2015 Adv. Mater. 27 1480
[3] Wang Y, Chen H, Liu J, Zhu Z, Chang L, Li D and Jia S 2015 J. Polym. Eng. 35 611
[4] Chollet F 2016 Micromachines 7 18
[5] Tomatsu I, Peng K and Kros A 2011 Adv. Drug Delivery Rev. 63 1257
[6] Ponmozhi J, Frias C, Marques T and Frazao O 2012 Measurement 45 1675
[7] Langbein S and Czechowicz A 2015 Shape Memory Alloy Valves (New York: Springer International Publishing) pp. 41-72
[8] Friend J and Yeo L 2015 Encyclopedia of Microfluidics and Nanofluidics (New York: Springer) pp. 2743-2754
[9] Finkelmann H 1987 Angew. Chem. Int. Ed. 26 816
[10] Zentel R 1989 Angew. Chem. Int. Ed. 28 1407
[11] Kelly S M 1995 J. Mater. Chem. 5 2047
[12] Ohm C, Brehmer M and Zentel R 2010 Adv. Mater. 22 3366
[13] Ikeda T, Mamiya J and Yu Y L 2007 Angew. Chem. Int. Ed. 46 506
[14] Bar-Cohen Y and Zhang Q M 2008 Mrs Bull. 33 173
[15] de Gennes P 1975 CR Acad. Sci. B 281 101
[16] de Gennes P G, Hebert M and Kant R 1997 Macromol. Symp. 113 39
[17] Kupfer J and Finkelmann H 1991 Makromol. Chem-Rapid. 12 717
[18] Wermter H and Finkelmann H 2001 e-Polymers 13
[19] Li M H, Keller P, Yang J Y and Albouy P A 2004 Adv. Mater. 16 1922
[20] Wei R B, Zhang H X, He Y N, Wang X G and Keller P 2014 Liq. Cryst. 41 1821
[21] Buguin A, Li M H, Silberzan P, Ladoux B and Keller P 2006 J. Am. Chem. Soc. 128 1088
[22] Mol G N, Harris K D, Bastiaansen C W M and Broer D J 2005 Adv. Funct. Mater. 15 1155
[23] Sawa Y, Ye F F, Urayama K, Takigawa T, Gimenez-Pinto V, Selinger R L B and Selinger J V 2011 Proc. Nat. Acad. Sci. USA 108 6364
[24] Ware T H, McConney M E, Wie J J, Tondiglia V P and White T J 2015 Science 347 982
[25] Ho C M and Tai Y C 1998 Annu. Rev. Fluid. Mech. 30 579
[26] Ohm C, Serra C and Zentel R 2009 Adv. Mater. 21 4859
[27] Ohm C, Fleischmann E K, Kraus I, Serra C and Zentel R 2010 Adv. Funct. Mater. 20 4314
[28] Fleischmann E K, Liang H L, Kapernaum N, Giesselmann F, Lagerwall J and Zentel R 2012 Nat. Commun. 3 1178
[29] Ohm C, Morys M, Forst F R, Braun L, Eremin A, Serra C, Stannarius R and Zentel R 2011 Soft Matter 7 3730
[30] Yang H, Buguin A, Taulemesse J M, Kaneko K, Mery S, Bergeret A and Keller P 2009 J. Am. Chem. Soc. 131 15000
[31] Wu Z L, Buguin A, Yang H, Taulemesse J M, Le Moigne N, Bergeret A, Wang X G and Keller P 2013 Adv. Funct. Mater. 23 3070
[32] Ohm C, Haberkorn N, Theato P and Zentel R 2011 Small 7 194
[33] Sanchez-Ferrer A, Fischl T, Stubenrauch M, Wurmus H, Hoffmann M and Finkelmann H 2009 Macromol. Chem. Phys. 210 1671
[34] Sanchez-Ferrer A, Fischl T, Stubenrauch M, Albrecht A, Wurmus H, Hoffmann M and Finkelmann H 2011 Adv. Mater. 23 4526
[35] Schuhladen S, Preller F, Rix R, Petsch S, Zentel R and Zappe H 2014 Adv. Mater. 26 7247
[36] Chambers M, Finkelmann H, Remskar M, Sanchez-Ferrer A, Zalar B and Zumer S 2009 J. Mater. Chem. 19 1524
[37] White T J and Broer D J 2015 Nat. Mater. 14 1087
[38] Chambers M, Zalar B, Remskar M, Zumer S and Finkelmann H 2006 Appl. Phys. Lett. 89 243116
[39] Kaiser A, Winkler M, Krause S, Finkelmann H and Schmidt A M 2009 J. Mater. Chem. 19 538
[40] Riou O, Lonetti B, Davidson P, Tan R P, Cormary B, Mingotaud A F, Di Cola E, Respaud M, Chaudret B, Soulantica K and Mauzac M 2014 J. Phys. Chem. B 118 3218
[41] Haberl J M, Sanchez-Ferrer A, Mihut A M, Dietsch H, Hirt A M and Mezzenga R 2013 Adv. Mater. 25 1787
[42] Yang L Q, Setyowati K, Li A, Gong S Q and Chen J 2008 Adv. Mater. 20 2271
[43] Ji Y, Huang Y Y, Rungsawang R and Terentjev E M 2010 Adv. Mater. 22 3436
[44] Camargo C J, Campanella H, Marshall J E, Torras N, Zinoviev K, Terentjev E M and Esteve J 2011 Macromol. Rapid Commun. 32 1953
[45] Camargo C J, Torras N, Campanella H, Marshall J E, Zinoviev K, Campo E M, Terentjev E M and Esteve J 2011 Proc. SPIE 8107 810709
[46] Marshall J E, Ji Y, Torras N, Zinoviev K and Terentjev E M 2012 Soft Matter 8 1570
[47] Liu X Y, Wei R B, Hoang P T, Wang X G, Liu T and Keller P 2015 Adv. Funct. Mater. 25 3022
[48] de Haan L T, Sanchez-Somolinos C, Bastiaansen C M W, Schenning A P H J and Broer D J 2012 Angew. Chem. Int. Ed. 51 12469
[49] Kohlmeyer R R and Chen J 2013 Angew. Chem. Int. Ed. 52 9234
[50] Li C S, Liu Y, Huang X Z and Jiang H R 2012 Adv. Funct. Mater. 22 5166
[51] Wei J and Yu Y L 2012 Soft Matter 8 8050
[52] Yu Y L and Ikeda T 2006 Angew. Chem. Int. Ed. 45 5416
[53] Wang W, Wang X Z, Cheng F T, Yu Y L and Zhu Y T 2011 Prog. Chem. 23 1165 (in Chinese)
[54] Zhang B Z, Cui H and She W L 2009 Chin. Phy. B 18 209
[55] Dong Y, Shen D and Zheng Z G 2012 Chin. J. Liq. Cryst. Disp. 27 14
[56] Zhou L, Zhang D, Zheng Z G, Shen D and Bao X F 2013 Chin. J. Liq. Cryst. Disp. 28 7 (in Chinese)
[57] Ube T and Ikeda T 2014 Angew. Chem. Int. Ed. 53 10290
[58] Finkelmann H, Nishikawa E, Pereira G G and Warner M 2001 Phys. Rev. Lett. 87 015501
[59] Ikeda T, Nakano M, Yu Y L, Tsutsumi O and Kanazawa A 2003 Adv. Mater. 15 201
[60] Yu Y L, Nakano M and Ikeda T 2003 Nature 425 145
[61] Yamada M, Kondo M, Mamiya J I, Yu Y L, Kinoshita M, Barrett C J and Ikeda T 2008 Angew. Chem. Int. Ed. 47 4986
[62] Yamada M, Kondo M, Miyasato R, Naka Y, Mamiya J, Kinoshita M, Shishido A, Yu Y L, Barrett C J and Ikeda T 2009 J. Mater. Chem. 19 60
[63] Yin R Y, Xu W X, Kondo M, Yen C C, Mamiya J, Ikeda T and Yu Y L 2009 J. Mater. Chem. 19 3141
[64] Cheng F T, Zhang Y Y, Yin R Y and Yu Y L 2010 J. Mater. Chem. 20 4888
[65] Cheng F T, Yin R Y, Zhang Y Y, Yen C C and Yu Y L 2010 Soft Matter 6 3447
[66] Chen M L, Xing X, Liu Z, Zhu Y T, Liu H, Yu Y L and Cheng F T 2010 Appl. Phys. A 100 39
[67] Chen M L, Huang H T, Zhu Y T, Liu Z, Xing X, Cheng F T and Yu Y L 2011 Appl. Phys. A 102 667
[68] Iamsaard S, Asshoff S J, Matt B, Kudernac T, Cornelissen J J L M, Fletcher S P and Katsonis N 2014 Nat. Chem. 6 229
[69] van Oosten C L, Bastiaansen C W M and Broer D J 2009 Nat. Mater. 8 677
[70] Li C, Cheng F T, Lv J A, Zhao Y, Liu M J, Jiang L and Yu Y L 2012 Soft Matter 8 3730
[71] Zhan Y Y, Zhao J Q, Liu W D, Yang B, Wei J and Yu Y L 2015 Acs Appl. Mater. Interfaces 7 25522
[72] Yan Z, Ji X M, Wu W, Wei J and Yu Y L 2012 Macromol. Rapid. Commun. 33 1362
[73] Zhao J Q, Liu Y Y and Yu Y L 2014 J. Mater. Chem. C 2 10262
[74] Zeng H, Martella D, Wasylczyk P, Cerretti G, Lavocat J C G, Ho C H, Parmeggiani C and Wiersma D S 2014 Adv. Mater. 26 2319
[75] Zeng H, Wasylczyk P, Parmeggiani C, Martella D, Burresi M and Wiersma D S 2015 Adv. Mater. 27 3883
[1] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[2] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[3] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[6] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[7] Estimation of biophysical properties of cell exposed to electric field
Hui Zhang(张辉), Liyang Wang(王李阳), Peijie Zhang(张培杰), Xiaodi Zhang(张小娣), and Jun Ma(马军). Chin. Phys. B, 2021, 30(3): 038702.
[8] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
[9] Design, fabrication, and characterization of Ti/Au transition-edge sensor with different dimensions of suspended beams
Hong-Jun Zhang(张宏俊), Ji Wen(文继), Zhao-Hong Mo(莫钊洪), Hong-Rui Liu(刘鸿瑞), Xiao-Dong Wang(汪小东), Zhong-Hua Xiong(熊忠华), Jin-Wen Zhang(张锦文), and Mao-Bing Shuai(帅茂兵). Chin. Phys. B, 2021, 30(11): 117401.
[10] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[11] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[12] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[13] Electrohydrodynamic behaviors of droplet under a uniform direct current electric field
Zi-Long Deng(邓梓龙), Mei-Mei Sun(孙美美), Cheng Yu(于程). Chin. Phys. B, 2020, 29(3): 034703.
[14] Plastic deformation mechanism transition of Ti/Ni nanolaminate with pre-existing crack: Molecular dynamics study
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼)†, Min-Rong An(安敏荣), and Lan-Ting Liu(刘兰亭). Chin. Phys. B, 2020, 29(11): 116201.
[15] Influence of matrigel on the shape and dynamics of cancer cells
Teng Ye(叶腾), Feng Qiu(邱峰). Chin. Phys. B, 2019, 28(10): 108704.
No Suggested Reading articles found!