Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 095205    DOI: 10.1088/1674-1056/25/9/095205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Influence of air pressure on the performance of plasma synthetic jet actuator

Yang Li(李洋)1, Min Jia(贾敏)1, Yun Wu(吴云)2, Ying-hong Li(李应红)1, Hao-hua Zong(宗豪华)2, Hui-min Song(宋慧敏)1, Hua Liang(梁华)1
1. Air Force Engineering University, Xi'an 710038, China;
2. Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Plasma synthetic jet actuator (PSJA) has a wide application prospect in the high-speed flow control field for its high jet velocity. In this paper, the influence of the air pressure on the performance of a two-electrode PSJA is investigated by the schlieren method in a large range from 7 kPa to 100 kPa. The energy consumed by the PSJA is roughly the same for all the pressure levels. Traces of the precursor shock wave velocity and the jet front velocity vary a lot for different pressures. The precursor shock wave velocity first decreases gradually and then remains at 345 m/s as the air pressure increases. The peak jet front velocity always appears at the first appearance of a jet, and it decreases gradually with the increase of the air pressure. A maximum precursor shock wave velocity of 520 m/s and a maximum jet front velocity of 440 m/s are observed at the pressure of 7 kPa. The averaged jet velocity in one period ranges from 44 m/s to 54 m/s for all air pressures, and it drops with the rising of the air pressure. High velocities of the precursor shock wave and the jet front indicate that this type of PSJA can still be used to influence the high-speed flow field at 7 kPa.
Keywords:  plasma synthetic jet actuator      air pressure      performance      schlieren method  
Received:  29 September 2015      Revised:  14 April 2016      Accepted manuscript online: 
PACS:  52.50.Dg (Plasma sources)  
  52.80.Mg (Arcs; sparks; lightning; atmospheric electricity)  
  52.80.Vp (Discharge in vacuum)  
  47.80.Jk (Flow visualization and imaging)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51407197, 51522606, 51336011, 91541120, and 11472306).
Corresponding Authors:  Yun Wu     E-mail:  wuyun1223@126.com

Cite this article: 

Yang Li(李洋), Min Jia(贾敏), Yun Wu(吴云), Ying-hong Li(李应红), Hao-hua Zong(宗豪华), Hui-min Song(宋慧敏), Hua Liang(梁华) Influence of air pressure on the performance of plasma synthetic jet actuator 2016 Chin. Phys. B 25 095205

[1] Li Y H, Wu Y and Li J 2012 Int. J. Flow Control 4 1756
[2] Zhao G Y, Li Y H and Liang H 2015 Acta. Phys. Sin. 64 015101 (in Chinese)
[3] Zhao G Y, Li Y H, Liang H and Han M H 2015 Exp. Fluids 56 1864
[4] Popkin S H, Taylor T M and Cybyk B Z 2013 J. Hopkins Apl. Tech. D 32 404
[5] Cybyk B Z, Wilkerson J T and Grossman K R 2004 2nd AIAA Flow Control Conference, June 28-July 1, 2004, Portland, Oregon, p. 2131
[6] Grossman K R, Cybyk B Z and VanWi D M 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit, January 5-8 ,2004, Reno, Nevada, p. 0089
[7] Ko H S, Haack S J and Land H B 2010 Flow Meas. Instrum. 21 443
[8] Haack S J, Land H and Cybyk B 2008 4th Flow Control Conference, June 23-26, 2008, Seattle, Washington, p. 3759
[9] Cybyk B Z, Grossman K R and Wilkerson J T 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit, January 10-13, 2005, Reno, Nevada p. 401
[10] Cybyk B Z, Simon D H and Land H B 2006 44th AIAA Aerospace Sciences Meeting and Exhibit, January 9-12, 2006, Reno, Nevada, p. 478
[11] Cybyk B Z, Wilkerson J T and Grossman K R 2003 33rd AIAA Fluid Dynamics Conference and Exhibit, Orlando 23-26 , Florida, American, p. 3711
[12] Belinger A, Hardy P and Barricau P 2011 J. Phys. D: Appl. Phys. 44 365201
[13] Berlinger A, Naude N and Cambronne J P 2014 J. Phys. D: Appl. Phys. 47 345202
[14] Belinger A, Hardy P and Gherardi N 2011 IEEE Trans. Plasma Sci. 39 2334
[15] Jin D, Li Y H and Jia M 2013 Plasma Sci. Tech. 15 1033
[16] Santhanakrishnan A and Jacob J D 2007 J. Phys. D: Appl. Phys. 40 637
[17] Santhanakrishnan A, Reasor D A and LeBeau R P 2009 Phys. Fluids 2009 21 043602
[18] Reedy T M and Kale N V 2013 AIAA J. 51 2027
[19] Haack S J, Taylor T and Emhoff J 2010 5th Flow Control Conference, June 28-July 1, 2010, Chicago, Illinois, p. 4979
[20] Popkin S H, Cybyk B Z and Land III H B 2013 51st AIAA Aerospace Sciences Meeting, January 7-10, 2013, Texas, American, p. 0322
[21] Golbabaei A M, Knight D and Wilkinson S 2015 AIAA J. 53 501
[22] Shin J 2010 Chin. J. Aeronaut. 23 518
[23] Zong H H, Wu Y and Li Y H 2015 Phys. Fluids 27 027105
[24] Zong H H, Cui W and Wu Y 2015 Sensor Actuat. A: Phys. 222 114
[25] Emerick T, Ali M Y and Foster C 2014 Exp. Fluids 55 1858
[26] Wang L, Xia Z X and Luo Z B 2014 Sci. China-Phys. Mech. 57 2309
[27] Wang L, Xia Z X and Luo Z B 2014 Acta. Phys. Sin. 63 194702 (in Chinese)
[1] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[2] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[3] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[4] Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model
Yue Chen(陈约), Fuliang Guo(郭福亮), Lufeng Yang(杨陆峰), Jiaze Lu(卢嘉泽), Danna Liu(刘丹娜), Huayu Wang(王华宇), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(7): 078201.
[5] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[6] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[7] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[8] Enhanced thermoelectric performance of PEDOT: PSS films via ionic liquid post-treatment
Jiaji Yang(杨家霁), Xuejing Li(李雪晶), Yanhua Jia(贾艳华), Jiang Zhang(张弜), and Qinglin Jiang(蒋庆林). Chin. Phys. B, 2022, 31(2): 027302.
[9] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[10] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
[11] Detailed characterization of polycapillary focusing x-ray lenses by a charge-coupled device detector and a pinhole
Xue-Peng Sun(孙学鹏), Shang-Kun Shao(邵尚坤), Hui-Quan Li(李惠泉), Tian-Yu Yuan(袁天语), and Tian-Xi Sun(孙天希). Chin. Phys. B, 2022, 31(12): 120702.
[12] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[13] Extended-source broken gate tunnel FET for improving direct current and analog/radio-frequency performance
Hui-Fang Xu(许会芳), Wen Sun(孙雯), and Na Wang(王娜). Chin. Phys. B, 2021, 30(7): 078503.
[14] Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100
Ao Chen(陈翱), Peng Wang(王鹏), Tao Lin(林涛), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), and Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2021, 30(4): 048506.
[15] Influence of the coupled-dipoles on photosynthetic performance in a photosynthetic quantum heat engine
Ling-Fang Li(李玲芳) and Shun-Cai Zhao(赵顺才). Chin. Phys. B, 2021, 30(4): 044215.
No Suggested Reading articles found!