Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 090502    DOI: 10.1088/1674-1056/25/9/090502
GENERAL Prev   Next  

A flux-controlled model of meminductor and its application in chaotic oscillator

Guang-Yi Wang(王光义)1, Pei-Pei Jin(靳培培)1, Xiao-Wei Wang(王晓炜)2, Yi-Ran Shen(沈怡然)1, Fang Yuan(袁方)1, Xiao-Yuan Wang(王晓媛)1
1. Key Laboratory of RF Circuits and Systems (Ministry of Education), Institute of Modern Circuits and Intelligent Information, Hangzhou Dianzi University, Hangzhou 310018, China;
2. Department of Automation, Shanghai University, Shanghai 200072, China
Abstract  A meminductor is a new type of memory device developed from the memristor. We present a mathematical model of a flux-controlled meminductor and its equivalent circuit model for exploring the properties of the meminductor in a nonlinear circuit. We explore the response characteristics of the meminductor under the exciting signals of sinusoidal, square, and triangular waves by using theoretical analysis and experimental tests, and design a meminductor-based oscillator based on the model. Theoretical analysis and experiments show that the meminductor-based oscillator possesses complex bifurcation behaviors and can generate periodic and chaotic oscillations. A special phenomenon called the co-existent oscillation that can generate multiple oscillations (such as chaotic, periodic oscillations as well as stable equilibrium) with the same parameters and different initial conditions occurs. We also design an analog circuit to realize the meminductor-based oscillator, and the circuit experiment results are in accordance with the theory analysis.
Keywords:  meminductor      oscillator      chaos      co-existent attractor  
Received:  24 February 2016      Revised:  26 April 2016      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Jn (High-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271064, 61401134, and 60971046), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LZ12F01001 and LQ14F010008), and the Program for Zhejiang Leading Team of S&T Innovation, China (Grant No. 2010R50010).
Corresponding Authors:  Xiao-Wei Wang     E-mail:  laura423_wang@163.com

Cite this article: 

Guang-Yi Wang(王光义), Pei-Pei Jin(靳培培), Xiao-Wei Wang(王晓炜), Yi-Ran Shen(沈怡然), Fang Yuan(袁方), Xiao-Yuan Wang(王晓媛) A flux-controlled model of meminductor and its application in chaotic oscillator 2016 Chin. Phys. B 25 090502

[1] Chua L O 1971 IEEE Trans. Circuit Theory 18 507
[2] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[3] Chua L O 1978 Guest Lectures of the 1978 European Conference on Circuit Theory and Design 81
[4] Chua L O 2003 Proc. IEEE 91 1830
[5] Di Ventra M, Pershin Y V and Chua L O 2009 Proc. IEEE 97 1717
[6] Chua L O 2009 IEEE Expert Now SHORT Course [Online] Available at:http: //ieeexplore.ieee.org/xpl/modulesabstract.jsp?mdnumber=EW1091
[7] Jung C M, Choi J M and Min K S 2012 IEEE Trans. Nanotechnol. 11 611
[8] Eshraghian K, Cho K R, Kavehei O, Kang S K, Abbott D and Steve S M 2011 IEEE Trans. Vlsi Systa. 19 1407
[9] Bao B C, Liu Z and Xu J P 2010 Chin. Phys. B 19 030510
[10] Bao B C, Hu F W, Liu Z and Xu J P 2014 Chin. Phys. B 23 070503
[11] Xu B R 2013 Acta Phys. Sin. 62 190506 (in Chinese)
[12] Fouda M E and Radwan A G 2014 Microelectron J. 45 1372
[13] Pershin Y V and Di Ventra M 2011 Adv. Phys. 60 145
[14] Biolek D, Biolek Z and Biolkova V 2011 Circ. Sig. Process. 66 129
[15] Liang Y, Yu D S and Chen H 2013 Acta Phys. Sin. 62 158501 (in Chinese)
[16] Abdelouahab M S, Lozi R and Chua L O 2014 Int. J. Bifurcation Chaos 24 1430023
[17] Pershin Y V and Di Ventra M 2010 Electron. Lett. 46 517
[18] Shi Z Y, Wang C L, Bao B C and Feng F 2014 UEST C 43 845
[19] Sah M P, Budhathoki R K, Yang C and Kim H 2014 Circuit ISCAS 33 2363
[20] Pershin Y V and Di Ventra M 2011 Adv. Phys. 60 145
[21] Kim K M, Jeong D S and Hwang C S 2011 Nanotechnology 22 254002
[22] Muthuswamy B and Chua L 2010 Int. J. Bifurcation Chaos 20 1567
[23] Sprott J C, Wang X and Chen G 2013 Int. J. Bifurcation Chaos 23 1350093
[24] Molaie M, Jafari S, Sprott J C and Hashemi S M R H 2013 Int. J. Bifurcation Chaos 23 1350188
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[5] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[6] A 45-μJ, 10-kHz, burst-mode picosecond optical parametric oscillator synchronously pumped at a second harmonic cavity
Chao Ma(马超), Ke Liu(刘可), Yong Bo(薄勇), Zhi-Min Wang(王志敏), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084206.
[7] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[8] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[9] Spectroscopy and scattering matrices with nitrogen atom: Rydberg states and optical oscillator strengths
Yuhao Zhu(朱宇豪), Rui Jin(金锐), Yong Wu(吴勇), and Jianguo Wang(王建国). Chin. Phys. B, 2022, 31(4): 043103.
[10] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[11] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[12] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[13] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[14] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[15] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
No Suggested Reading articles found!