Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 090501    DOI: 10.1088/1674-1056/25/9/090501
GENERAL Prev   Next  

Current and efficiency optimization under oscillating forces in entropic barriers

Ferhat Nutku, Ekrem Aydiner
Theoretical Physics Research Group, Department of Physics, Faculty of Science, İstanbul University, Vezneciler, İstanbul 34134, Turkey
Abstract  The transport of externally overdriven particles confined in entropic barriers is investigated under various types of oscillating and temporal forces. Temperature, load, and amplitude dependence of the particle current and energy conversion efficiency are investigated in three dimensions. For oscillating forces, the optimized temperature-load, amplitude-temperature, and amplitude-load intervals are determined when fixing the amplitude, load, and temperature, respectively. By using three-dimensional plots rather than two-dimensional ones, it is clearly shown that oscillating forces provide more efficiency compared with a temporal one in specified optimized parameter regions. Furthermore, the dependency of efficiency to the angle between the unbiased driving force and a constant force is investigated and an asymmetric angular dependence is found for all types of forces. Finally, it is shown that oscillating forces with a high amplitude and under a moderate load lead to higher efficiencies than a temporal force at both low and high temperatures for the entire range of contact angle.
Keywords:  entropic barrier      Brownian motion      Fick-Jacobs equation      efficiency of Brownian motor  
Received:  17 February 2016      Revised:  07 May 2016      Accepted manuscript online: 
PACS:  05.40.Jc (Brownian motion)  
  05.10.Gg (Stochastic analysis methods)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
Fund: Project supported by the Istanbul University, Turkey (Grant No. 55383).
Corresponding Authors:  Ferhat Nutku     E-mail:  fnutku@istanbul.edu.tr

Cite this article: 

Ferhat Nutku, Ekrem Aydiner Current and efficiency optimization under oscillating forces in entropic barriers 2016 Chin. Phys. B 25 090501

[1] Reimann P 2002 Phys. Rep. 361 57
[2] Parrondo J and de Cisneros B 2002 Appl. Phys. A: Mater. Sci. & Process. 75 179
[3] Hänggi P 2009 Rev. Modern Phys. 81 387
[4] Tsekov R and Lensen M C 2013 Chin. Phys. Lett. 30 070501
[5] Han J and Craighead H G 2000 Science 288 1026
[6] Streek M, Schmid F, Duong T T and Ros A 2004 J. Biotechnol. 112 79
[7] Siwy Z, Kosińska I D, Fuliński A and Martin C R 2005 Phys. Rev. Lett. 94 048102
[8] Kalman E, Healy K and Siwy Z S 2007 EPL 78 28002
[9] Ai B Q, He Y F and Zhong W R 2011 Phys. Rev. E 83 051106
[10] Kettner C, Reimann P, Hänggi P and Müller F 2000 Phys. Rev. E 61 312
[11] Müller F, Birner A, Schilling J, Gösele U, Kettner Ch and Hänggi P 2000 Physica Status Solidi 182 585
[12] Reguera D, Luque A, Burada P S, Schmid G, Rubí J M and Hänggi P 2012 Phys. Rev. Lett. 108 020604
[13] Sumithra K and Sintes T 2001 Physica A 297 1
[14] Dan D and Jayannavar A M 2002 Phys. Rev. E 65 037105
[15] Bartussek R, Hänggi P and Kissner J G 1994 Europhys. Lett. 28 459
[16] Dan D, Mahato M C and Jayannavar A 2001 Physica A 296 375
[17] Takagi F and Hondou T 1999 Phys. Rev. E 60 4954
[18] Reguera D and Rubí J M 2001 Phys. Rev. E 64 061106
[19] Ai B Q and Liu L G 2006 Phys. Rev. E 74 051114
[20] Ai B Q, Xie H Z and Liu L G 2007 Phys. Rev. E 75 061126
[21] Burada P, Schmid G, Reguera D, Vainstein M, Rubi J and Hänggi P 2008 Phys. Rev. Lett. 101 130602
[22] Burada P S, Schmid G, Reguera D, Rubi J M and Hänggi P 2009 EPL 87 50003
[23] Reguera D and Rubi J M 2014 Eur. Phys. J. Spec. Top. 223 3079
[24] Ai B Q, Wang L and Liu L 2007 Chaos, Solitons & Fractals 34 1265
[25] Ai B Q 2009 J. Chem. Phys. 131 054111
[26] Kalinay P 2014 Phys. Rev. E 89 042123
[27] Ding H, Jiang H and Hou Z 2015 J. Chem. Phys. 142 194109
[28] Nutku F and Aydíner E 2015 Chin. Phys. B 24 040501
[29] Kalinay P 2014 J. Chem. Phys. 141 144101
[30] Kalinay P 2015 J. Chem. Phys. 142 014106
[31] Burada P S, Schmid G, Reguera D, Rubí J M and Hänggi P 2007 Phys. Rev. E 75 051111
[32] Reguera D, Schmid G, Burada P S, Rubi J M, Reimann P and Hänggi P 2006 Phys. Rev. E 96 130603
[33] Dagdug L, Vazquez M V, Berezhkovskii A M and Bezrukov S M 2010 J. Chem. Phys. 133 5
[34] Berezhkovskii A M and Bezrukov S M 2014 Eur. Phys. J. Spec. Top. 223 3063
[1] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[2] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[3] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[4] Exact solutions of stochastic fractional Korteweg de-Vries equation with conformable derivatives
Hossam A. Ghany, Abd-Allah Hyder, M Zakarya. Chin. Phys. B, 2020, 29(3): 030203.
[5] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[6] Current transport and mass separation for an asymmetric fluctuation system with correlated noises
Jie Wang(王杰), Li-Juan Ning(宁丽娟). Chin. Phys. B, 2018, 27(1): 010501.
[7] Anisotropic transport of microalgae Chlorella vulgaris in microfluidic channel
Nur Izzati Ishak, S V Muniandy, Vengadesh Periasamy, Fong-Lee Ng, Siew-Moi Phang. Chin. Phys. B, 2017, 26(8): 088203.
[8] An image encryption scheme based on three-dimensional Brownian motion and chaotic system
Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Ke Yuan(袁科), Yang Lu(路杨), Yi-Ran Chen(陈怡然). Chin. Phys. B, 2017, 26(2): 020504.
[9] Current and efficiency of Brownian particles under oscillating forces in entropic barriers
Ferhat Nutku, Ekrem Aydıner. Chin. Phys. B, 2015, 24(4): 040501.
[10] Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
Wang Zhi-Gang (王志刚), Gao Rui-Mei (高瑞梅), Fan Xiao-Ming (樊晓明), Han Qi-Xing (韩七星). Chin. Phys. B, 2014, 23(9): 090201.
[11] Subcooled pool boiling heat transfer in fractal nanofluids:A novel analytical model
Xiao Bo-Qi (肖波齐), Yang Yi (杨毅), Xu Xiao-Fu (许晓赋). Chin. Phys. B, 2014, 23(2): 026601.
[12] Coupling effect of Brownian motion and laminar shear flow on colloid coagulation:a Brownian dynamics simulation study
Xu Sheng-Hua(徐升华), Sun Zhi-Wei(孙祉伟), Li Xu(李旭), and Jin Tong Wang . Chin. Phys. B, 2012, 21(5): 054702.
[13] Behaviour of the current in a two-dimensional Büttiker-Landauer motor with entropic barriers
Liu Jiu-Liang(刘久亮) and He Ji-Zhou(何济洲). Chin. Phys. B, 2010, 19(3): 030504.
[14] Impulsive synchronization and control of directed transport in chaotic ratchets
Guo Liu-Xiao(过榴晓), Hu Man-Feng(胡满峰), and Xu Zhen-Yuan(徐振源). Chin. Phys. B, 2010, 19(2): 020512.
No Suggested Reading articles found!