Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 090503    DOI: 10.1088/1674-1056/25/9/090503
GENERAL Prev   Next  

Inverse full state hybrid projective synchronizationfor chaotic maps with different dimensions

Adel Ouannas1, Giuseppe Grassi2
1. Laboratory of Mathematics, Informatics and Systems (LAMIS), University of Larbi Tebessi, Tebessa 12002, Algeria;
2 Università del Salento, Dipartimento Ingegneria Innovazione, 73100 Lecce, Italy
Abstract  A new synchronization scheme for chaotic (hyperchaotic) maps with different dimensions is presented. Specifically, given a drive system map with dimension n and a response system with dimension m, the proposed approach enables each drive system state to be synchronized with a linear response combination of the response system states. The method, based on the Lyapunov stability theory and the pole placement technique, presents some useful features: (i) it enables synchronization to be achieved for both cases of n < m and n > m; (ii) it is rigorous, being based on theorems; (iii) it can be readily applied to any chaotic (hyperchaotic) maps defined to date. Finally, the capability of the approach is illustrated by synchronization examples between the two-dimensional Hénon map (as the drive system) and the three-dimensional hyperchaotic Wang map (as the response system), and the three-dimensional Hénon-like map (as the drive system) and the two-dimensional Lorenz discrete-time system (as the response system).
Keywords:  chaotic map      full state hybrid projective synchronization      inverse problem      maps with different dimensions  
Received:  22 November 2015      Revised:  06 March 2016      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Corresponding Authors:  Adel Ouannas, Giuseppe Grassi     E-mail:  ouannas_adel@yahoo.fr;giuseppe.grassi@unisalento.it

Cite this article: 

Adel Ouannas, Giuseppe Grassi Inverse full state hybrid projective synchronizationfor chaotic maps with different dimensions 2016 Chin. Phys. B 25 090503

[1] Carroll T L and Pecora L M 1991 IEEE Trans. Circuits Syst. 38 453
[2] Brucoli M, Carnimeo L and Grassi G 1996 Int. J. Bifurcat. Chaos 6 1673
[3] Grassi G and Mascolo S 1997 IEEE Trans. Circuits Syst. I 44 1011
[4] Grassi G and Mascolo S 1998 IEE Electron Lett. 34 424
[5] Brucoli M, Cafagna D, Carnimeo L and Grassi G 1998 Int. J. Bifurcat. Chaos 8 2031
[6] Grassi G and Mascolo S. 1999 IEEE Trans. Circuits Syst. II 46 478
[7] Manieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
[8] Chee C Y and Xu D 2003 Phys. Lett. A 318 112
[9] Xu D 2001 Phys. Rev. E 63 2
[10] Xu D and Chee C Y 2002 Phys. Rev. E 66 046218
[11] Grassi G and Miller D A 2009 Chaos Soliton. Fract. 39 1246
[12] Grassi G and Miller D A 2007 Int. J. Bifur. Chaos 17 1337
[13] Niu Y J, Wang X Y, Nian F Z and Wang M J 2010 Chin. Phys. B 19 120507
[14] Hu M, Xu Z, Zhang R and Hu A 2007 Phys. Lett. A 365 315
[15] Zhang Q and Lu J 2008 Phys. Lett. A 372 1416
[16] Hu M, Xu Z, Zhang R and Hu A 2007 Phys. Lett. A 361 231
[17] Hu M, Xu Z and Zhang R 2008 Comm. Nonlinear Science Num. Simulations 13 456
[18] Hu M, Xu Z and Zhang R 2008 Comm. Nonlinear Science Num. Simulations 13 782
[19] Grassi G 2012 Chin. Phys. B 21 060504
[20] Han F, Wang Z J, Fan H and Gong T 2015 Chin. Phys. Lett. 32 40502
[21] Wang S T, Wu Z M, Wu J G, Zhou L and Xia G Q 2015 Acta Phys. Sin. 64 154205 (in Chinese)
[22] Ren H P and Bai C 2015 Chin. Phys. B 24 80503
[23] Wei W and Zuo M 2015 Chin. Phys. B 24 80501
[24] Liu S, Wang Z L, Zhao S S, Li H B and Xiong L J 2015 Chin. Phys. B 24 74501
[25] Shu J 2015 Chin. Phys. B 24 60509
[26] Yang F, Wang G Y and Wang X Y 2015 Chin. Phys. B 24 60506
[27] Ouannas A 2014 J. Nonlinear Dynamics 983293
[28] Ouannas A and Odibat Z 2015 Nonlinear Dynamics 81 765
[29] Ouannas A and Mahmoud E E 2014 Journal Computational Intelligence and Electronic Systems 3 188
[30] Danca M F and Tang W K S 2016 Chin. Phys. B 25 010505
[31] Wang Y, Cai B Z, Jin P P and Hu T L 2016 Chin. Phys. B 25 010503
[32] Hénon M 1976 Comm. Math. Phys. 50 69
[33] Wang X Y 2003 Chaos in Complex Nonlinear Systems (Beijing: Publishing House of Electronics Industry)
[34] Stefanski K 1998 Chaos Soliton. Fract. 9 83
[35] Itoh M, Yang T and Chua L O 2001 Int. J. Bifurcation Chaos 11 551
[36] Grassi G 2012 Chin. Phys. B 21 050505
[1] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[2] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[3] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[4] Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm
Yue-Xi Peng(彭越兮), Ke-Hui Sun(孙克辉), Shao-Bo He(贺少波). Chin. Phys. B, 2020, 29(3): 030502.
[5] Weighted total variation using split Bregman fast quantitative susceptibility mapping reconstruction method
Lin Chen(陈琳), Zhi-Wei Zheng(郑志伟), Li-Jun Bao(包立君), Jin-Sheng Fang(方金生), Tian-He Yang(杨天和), Shu-Hui Cai(蔡淑惠), Cong-Bo Cai(蔡聪波). Chin. Phys. B, 2018, 27(8): 088701.
[6] Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes-Vanstone elliptic curve cryptosystem
Zeyu Liu(刘泽宇), Tiecheng Xia(夏铁成), Jinbo Wang(王金波). Chin. Phys. B, 2018, 27(3): 030502.
[7] Reconstruction of dynamic structures of experimental setups based on measurable experimental data only
Tian-Yu Chen(陈天宇), Yang Chen(陈阳), Hu-Jiang Yang(杨胡江), Jing-Hua Xiao(肖井华), Gang Hu(胡岗). Chin. Phys. B, 2018, 27(3): 030503.
[8] Apparent directional spectral emissivity determination of semitransparent materials
Chun-Yang Niu(牛春洋), Hong Qi(齐宏), Ya-Tao Ren(任亚涛), Li-Ming Ruan(阮立明). Chin. Phys. B, 2016, 25(4): 047801.
[9] Accurate reconstruction of the optical parameter distribution in participating medium based on the frequency-domain radiative transfer equation
Yao-Bin Qiao(乔要宾), Hong Qi(齐宏), Fang-Zhou Zhao(赵方舟), Li-Ming Ruan(阮立明). Chin. Phys. B, 2016, 25(12): 120201.
[10] An efficient three-party password-based key agreement protocol using extended chaotic maps
Shu Jian (舒剑). Chin. Phys. B, 2015, 24(6): 060509.
[11] Inverse problem of pulsed eddy current field of ferromagnetic plates
Chen Xing-Le (陈兴乐), Lei Yin-Zhao (雷银照). Chin. Phys. B, 2015, 24(3): 030301.
[12] Chaotic maps and biometrics-based anonymous three-party authenticated key exchange protocol without using passwords
Xie Qi (谢琪), Hu Bin (胡斌), Chen Ke-Fei (陈克非), Liu Wen-Hao (刘文浩), Tan Xiao (谭肖). Chin. Phys. B, 2015, 24(11): 110505.
[13] Simultaneous reconstruction of temperature distribution and radiative properties in participating media using a hybrid LSQR–PSO algorithm
Niu Chun-Yang (牛春洋), Qi Hong (齐宏), Huang Xing (黄兴), Ruan Li-Ming (阮立明), Wang Wei (王伟), Tan He-Ping (谈和平). Chin. Phys. B, 2015, 24(11): 114401.
[14] An approach to estimating and extrapolating model error based on inverse problem methods:towards accurate numerical weather prediction
Hu Shu-Juan (胡淑娟), Qiu Chun-Yu (邱春雨), Zhang Li-Yun (张利云), Huang Qi-Can (黄启灿), Yu Hai-Peng (于海鹏), Chou Ji-Fan (丑纪范). Chin. Phys. B, 2014, 23(8): 089201.
[15] Cardiac electrical activity imaging of patients with CRBBB or CLBBB in magnetocardiography
Zhu Jun-Jie (朱俊杰), Jiang Shi-Qin (蒋式勤), Wang Wei-Yuan (王伟远), Zhao Chen (赵晨), Wu Yan-Hua (吴燕华), Luo Ming (罗明), Quan Wei-Wei (权薇薇). Chin. Phys. B, 2014, 23(4): 048702.
No Suggested Reading articles found!