Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 078202    DOI: 10.1088/1674-1056/25/7/078202
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Ceramic synthesis of 0.08BiGaO3-0.90BaTiO3-0.02LiNbO3 under high pressure and high temperature

Hui Jin(金慧)1, Yong Li(李勇)1, Mou-Sheng Song(宋谋胜)1, Lin Chen(陈琳)1, Xiao-Peng Jia(贾晓鹏)2, Hong-An Ma(马红安)2
1 Physical and Applied Engineering Department, Tongren University, Tongren 554300, China;
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  In this paper, the preparation of 0.08BiGaO3-0.90BaTiO3-0.02LiNbO3 is investigated at pressure 3.8 GPa and temperature 1100-1200 ℃. Experimental results indicate that not only is the sintered rate more effective, but also the sintered temperature is lower under high pressure and high temperature than those of under normal pressure. It is thought that the adscititious pressure plays the key role in this process, which is discussed in detail. The composition and the structure of the as-prepared samples are recorded by XRD patterns. The result shows that the phases of BaTiO3, BaBiO2.77, and Ba2Bi4Ti5O18 with piezoelectric ceramic performance generate in the sintered samples. Furthermore, the surface morphology characteristics of the typical samples are also investigated using a scanning electron microscope. It indicates that the grain size and surface structure of the samples are closely related to the sintering temperature and sintering time. It is hoped that this study can provide a new train of thought for the preparation of lead-free piezoelectric ceramics with excellent performance.
Keywords:  lead-free piezoelectric ceramics      high pressure and high temperature      morphology  
Received:  27 January 2016      Revised:  07 March 2016      Accepted manuscript online: 
PACS:  82.45.Aa (Electrochemical synthesis)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51172089), the Natural Science Foundation of Education Department of Guizhou Province, China (Grant Nos. KY [2013]183 and LH [2015]7232), and the Research Fund for the Doctoral Program of Tongren University, China (Grant No. DS1302).
Corresponding Authors:  Yong Li     E-mail:  likaiyong6@163.com

Cite this article: 

Hui Jin(金慧), Yong Li(李勇), Mou-Sheng Song(宋谋胜), Lin Chen(陈琳), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安) Ceramic synthesis of 0.08BiGaO3-0.90BaTiO3-0.02LiNbO3 under high pressure and high temperature 2016 Chin. Phys. B 25 078202

[1] Janas V F and Safari A 1995 J. Am. Ceram. Soc. 78 2945
[2] Li K, Pang G, Chan H L W, Choy C L and Li J H 2004 J. Appl. Phys. 95 5691
[3] Zhen Y H and Li J F 2008 J. Appl. Phys. 103 084119
[4] Zhao M L, Wang C L, Wang J F, et al. 2004 Acta Phys. Sin. 53 2357 (in Chinese)
[5] Hou Y D, Zhu M K, Wang B, Yan H and Tian C S 2004 Mater. Lett. 58 1508
[6] Kim C S, Kim S K and Lee S Y 2003 Mater. Lett. 57 2233
[7] Xu D, Li W L, Wang L D, Wang W, Cao W P and Fei W D 2014 Acta Materialia 79 84
[8] Ge W W, Cao H, Li J F, Viehland D, Zhang Q H and Luo H S 2009 Appl. Phys. Lett. 95 162903
[9] Wang K and Li J F 2010 Adv. Funct. Mater. 20: 1924
[10] Wang K, Yao F Z, Jo W, Gobeljic D, ShvartsmanV V, Li F and Rödel J 2013 Adv. Funct. Mater. 23 4079
[11] Wang K and Li J F 2007 Appl. Phys. Lett. 91 262902
[12] Dai Y J, Zhang X W and Zhou G Y 2007 Appl. Phys. Lett. 90 262903
[13] Lu N, Yu R, Cheng Z Y, Dai Y J, Zhang X W and Zhu J 2010 Appl. Phys. Lett. 96 221905
[14] Wang L, Ren W, Shi P, Chen X, Wu X and Yao X 2010 Appl. Phys. Lett. 97 072902
[15] Leng S L, Shi W, Long Y and Li G R 2014 Acta Phys. Sin. 63 047102 (in Chinese)
[1] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[4] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[5] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[6] Migration and shape of cells on different interfaces
Xiaochen Wang(王晓晨), Qihui Fan (樊琪慧), and Fangfu Ye(叶方富). Chin. Phys. B, 2021, 30(9): 090502.
[7] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[8] Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide
Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman. Chin. Phys. B, 2021, 30(6): 067801.
[9] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[10] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[11] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[12] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[13] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[14] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[15] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
No Suggested Reading articles found!