ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Entanglement of movable mirror and cavity field enhanced by an optical parametric amplifier |
Cai-yun Zhang(张彩云), Hu Li(李虎), Gui-xia Pan(潘桂侠), Zong-qiang Sheng(圣宗强) |
Anhui University of Science and Technology, Huainan 232001, China |
|
|
Abstract A scheme to generate entanglement in a cavity optomechanical system filled with an optical parametric amplifier is proposed. With the help of the optical parametric amplifier, the stationary macroscopic entanglement between the movable mirror and the cavity field can be notably enhanced, and the entanglement increases when the parametric gain increases. Moreover, for a given parametric gain, the degree of entanglement of the cavity optomechanical system increases with increasing input laser power.
|
Received: 27 December 2015
Revised: 01 March 2016
Accepted manuscript online:
|
PACS:
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11247001), the Scientific Research Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJ2012A083), and the Doctor (Master) Fund of Anhui University of Science and Technology, China. |
Corresponding Authors:
Cai-yun Zhang
E-mail: zcylh9@163.com
|
Cite this article:
Cai-yun Zhang(张彩云), Hu Li(李虎), Gui-xia Pan(潘桂侠), Zong-qiang Sheng(圣宗强) Entanglement of movable mirror and cavity field enhanced by an optical parametric amplifier 2016 Chin. Phys. B 25 074202
|
[1] |
Brune M, Hagley E, Dreyer J, Maître X, Maali A, Wunderlich C, Raimond J M and Haroche S 1996 Phys. Rev. Lett. 77 4887
|
[2] |
Law C K 1995 Phys. Rev. A 51 2537
|
[3] |
Chen X, Liu X W, Zhang K Y, Yuan C H and Zhang W P 2015 Acta.Phys. Sin. 64 164211 (in Chinese)
|
[4] |
Bose S, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4175
|
[5] |
Bose S, Jacobs K and Knight P L 1999 Phys. Rev. A 59 3204
|
[6] |
vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
|
[7] |
Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
|
[8] |
Hartmann M J and Plenio M B 2008 Phys. Rev. Lett. 101 200503
|
[9] |
Paternostro M, Vitali D, Gigan S,. Kim M S, Brukner C, Eisert J and Aspelmeyer M 2007 Phys. Rev. Lett. 99 250401
|
[10] |
Wu Q, Xiao Y and Zhang Z M 2015 Chin. Phys. B 24 104208
|
[11] |
Barzanjeh S, Vitali D, Tombesi P and Milburn G 2011 Phys. Rev. A 84 042342
|
[12] |
Chiara G D, Paternostro M and Palma G M 2011 Phys. Rev. A 83 052324
|
[13] |
Tan H T and Li G X 2011 Phys. Rev. A 84 024301
|
[14] |
Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M and Harris J G E 2008 Nature 452 72
|
[15] |
Verhagen E, Deléglise S, Weis S, Schliesser A and Kippenberg T J 2012 Nature 482 10787
|
[16] |
Collett M J and Gardiner C W 1984 Phys. Rev. A 30 1386
|
[17] |
Agarwal G S 2006 Phys. Rev. Lett. 97 023601
|
[18] |
Mehmet M, Vahlbruch H, Lastzka N, Danzmann K and Schnabel R 2010 Phys. Rev. A 81 013814
|
[19] |
Eckstein A, Christ A, Mosley P J and Silberhorn C 2011 Phys. Rev. Lett. 106 013603
|
[20] |
Zhang J, Ye C, Gao F and Xiao M 2008 Phys. Rev. Lett. 101 233602
|
[21] |
Zhao C Y 2015 Chin. Phys. B 24 040302
|
[22] |
Silberhorn C, Lam P K, Weiß F, König O, Korolkova N and Leuchs G 2001 Phys. Rev. Lett. 86 4267
|
[23] |
He W P and Li F L 2007 Phys. Rev. A 76 012328
|
[24] |
Yan Z H, Jia X J, Su X L, Duan Z Y, Xie C D and Peng K C 2012 Phys. Rev. A 85 040305
|
[25] |
Chen H X and Zhang J 2009 Phys. Rev. A 79 063826
|
[26] |
Shang Y N, Jia X J, Shen Y M, Xie C D and Peng K C 2010 Opt. Lett. 35 853
|
[27] |
Zhou Y Y, Jia X J, Li F, Yu J, Xie C D and Peng K C 2015 Scientific Reports 5 11132
|
[28] |
Walls D F and Milburn G J 1998 Optics (Berlin: Springer)
|
[29] |
Dejesus E X and Kaufman C 1998 Phys. Rev. A 35 5288
|
[30] |
Genes C, Mari A, Tombesi P andVitali D 2008 Phys. Rev. A 78 032316
|
[31] |
Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318
|
[32] |
Marquardt F, Chen J P, Clerk A A and Girvin S M 2007 Phys. Rev. Lett. 99 093902
|
[33] |
Mazzola L and Paternostro M 2011 Phys. Rev. A 83 062335
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|