ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Multiple trapping using a focused hybrid vector beam |
Li Zhang(张莉)1,2, Xiaodong Qiu(邱晓东)2, Lingwei Zeng(曾令伟)1, Lixiang Chen(陈理想)2 |
1 School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China;
2 Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, and Jiujiang Research Institute, Xiamen University, Xiamen 361005, China |
|
|
Abstract We propose a simple and efficient method that uses a single focused hybrid vector beam to confine metallic Rayleigh particles at multiple positions. We study the force mechanisms of multiple trapping by analyzing the gradient and scattering forces. It is observed that the wavelength and topological charges of the hybrid vector beam regulate the trapping positions and number of optical trap sites. The proposed method can be implemented easily in three-dimensional space, and it facilitates both trapping and organization of particles. Thus, it can provide an effective and controllable means for nanoparticle manipulation.
|
Received: 16 May 2019
Revised: 19 June 2019
Accepted manuscript online:
|
PACS:
|
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
|
42.25.Ja
|
(Polarization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604050, 91636109, 61575041, and 61875242), the Fundamental Research Funds for the Central Universities at Xiamen University, China (Grant No. 20720190057), the Natural Science Foundation of Fujian Province of China for Distinguished Young Scientists (Grant No. 2015J06002), the Program for New Century Excellent Talents in University of China (Grant No. NCET-13-0495), the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2016B010113004), and the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2015A030310296 and 2018A030313347). |
Corresponding Authors:
Li Zhang, Lixiang Chen
E-mail: zhangli_fosu@163.com;chenlx@xmu.edu.cn
|
Cite this article:
Li Zhang(张莉), Xiaodong Qiu(邱晓东), Lingwei Zeng(曾令伟), Lixiang Chen(陈理想) Multiple trapping using a focused hybrid vector beam 2019 Chin. Phys. B 28 094202
|
[1] |
Ashkin A 1970 Phys. Rev. Lett. 24 156
|
[2] |
Ambardekar A and Li Y Q 2005 Opt. Lett. 30 1797
|
[3] |
Oroszi L, Galajda P, Kirei H, Bottka S and Ormos P 2006 Phys. Rev. Lett. 97 058301
|
[4] |
Ponelies N, Scheef J, Harim A, Leitz G and Greulich K 1994 J. Biotechnol. 35 109
|
[5] |
Bayoudh S, Nieminen T, Heckenberg N and Rubinsztein H 2003 J. Mod. Opt. 50 1581
|
[6] |
Bloch I 2005 Nat. Physics 1 23
|
[7] |
Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288
|
[8] |
Kawauchi H, Yonezawa K, Kozawa Y and Sato S 2007 Opt. Lett. 32 1839
|
[9] |
Zhan Q W 2009 Adv. Opt. Photonics. 1 1
|
[10] |
Ng J, Lin Z F and Chan C T 2010 Phys. Rev. Lett. 104 103601
|
[11] |
Rui G H, Wang X Y, Gu B, Zhan Q W and Cui Y P 2016 Opt. Express 24 7212
|
[12] |
Wang X Y, Chen J, Li Y N, Ding J P, Guo C S and Wang H T 2010 Phys. Rev. Lett. 105 253602
|
[13] |
Kozawa Y and Sato S 2010 Opt. Express 18 10828
|
[14] |
Zhan Q W 2004 Opt. Express 12 3377
|
[15] |
Gu B, Xu D F, Rui G H, Lian M, Cui Y P and Zhan Q W 2015 Appl. Opt. 54 8123
|
[16] |
Čižmár T, Romero L C D, Dholakia K and Andrews D L 2010 J. Phys. B:At. Mol. Opt. Phys. 43 102001
|
[17] |
Cojoc D, Emiliani V, Ferrari E, Malureanu R, Cabrini S, Proietti R Z and Di Fabrizio E 2004 Jpn. J. Appl. Phys. 43 3910
|
[18] |
Roxworthy B J, Ko K D, Kumar A, Fung K H, Chow E K C, Liu G, Fang N X and Toussaint K C 2012 Nano Lett. 12 796
|
[19] |
Leite I T, Turtaev S, Jiang X, Šiler M, Cuschieri A, Russell P S J and Čižmár T 2018 Nat. Photonics. 12 33
|
[20] |
Visscher K, Gross S P and Block S M 1996 IEEE J. Sel. Top. Quant. 2 1066
|
[21] |
Beckley A M, Brown T G and Alonso M A 2010 Opt. Express 18 10777
|
[22] |
Wang X, Li Y, Chen J, Guo C, Ding J and Wang H 2010 Opt. Express 18 10786
|
[23] |
Lerman G M, Stern L and Levy U 2010 Opt. Express 18 27650
|
[24] |
Cardano F, Karimi E, Marrucci L, de Lisio C and Santamato E 2013 Opt. Express 21 8815
|
[25] |
Liu Z X, Liu Y Y, Ke Y G, Liu Y C, Shu W X, Luo H L and Wen S C 2017 Photon. Res. 5 15
|
[26] |
Zhang L, Qiu X D, Li F S, Liu H G, Chen X F and Chen L X 2018 Opt. Express 26 11678
|
[27] |
Dai X B, Li Y Q and Liu L H 2018 Opt. Commun. 426 46
|
[28] |
Richards B and Wolf E 1959 Proc. R. Soc. London Ser. A. 253 358
|
[29] |
Albaladejo S, Marqués M I, Laroche M and Sáenz J J 2009 Phys. Rev. Lett. 102 113602
|
[30] |
Canaguier-Dur, A, Cuche A, Genet C and Ebbesen T W 2013 Phys. Rev. A. 88 033831
|
[31] |
Draine B T 1988 Astrophys. J. 333 848
|
[32] |
McPeak K M, Jayanti S V, Kress S J P, Meyer S, Iotti S, Rossinelli A and Norris D J 2015 ACS Photon. 2 326
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|