Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 068901    DOI: 10.1088/1674-1056/25/6/068901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

A local fuzzy method based on “p-strong” community for detecting communities in networks

Yi Shen(沈毅)1,2, Gang Ren(任刚)1, Yang Liu(刘洋)2, Jia-Li Xu(徐家丽)2
1 School of Transportation, Southeast University, Nanjing 210096, China;
2 College of Information Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Abstract  

In this paper, we propose a local fuzzy method based on the idea of “p-strong” community to detect the disjoint and overlapping communities in networks. In the method, a refined agglomeration rule is designed for agglomerating nodes into local communities, and the overlapping nodes are detected based on the idea of making each community strong. We propose a contribution coefficient bvci to measure the contribution of an overlapping node to each of its belonging communities, and the fuzzy coefficients of the overlapping node can be obtained by normalizing the bvci to all its belonging communities. The running time of our method is analyzed and varies linearly with network size. We investigate our method on the computer-generated networks and real networks. The testing results indicate that the accuracy of our method in detecting disjoint communities is higher than those of the existing local methods and our method is efficient for detecting the overlapping nodes with fuzzy coefficients. Furthermore, the local optimizing scheme used in our method allows us to partly solve the resolution problem of the global modularity.

Keywords:  networks      local fuzzy method      overlapping communities      fuzzy coefficients  
Received:  08 November 2015      Revised:  29 February 2016      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51278101 and 51578149), the Science and Technology Program of Ministry of Transport of China (Grant No. 2015318J33080), the Jiangsu Provincial Post-doctoral Science Foundation, China (Grant No. 1501046B), and the Fundamental Research Funds for the Central Universities, China (Grant No. Y0201500219).

Corresponding Authors:  Gang Ren     E-mail:  rengang@seu.edu.cn

Cite this article: 

Yi Shen(沈毅), Gang Ren(任刚), Yang Liu(刘洋), Jia-Li Xu(徐家丽) A local fuzzy method based on “p-strong” community for detecting communities in networks 2016 Chin. Phys. B 25 068901

[1] Lancichinetti A, Fortunato S and Kertész J 2009 New J. Phys. 11 033015
[2] Davis B G and Carley M K 2008 Social Networks 30 201
[3] Guimera R and Amaral L AN 2005 Nature 433 895
[4] Newman M E J and Girvan M 2004 Phys. Rev. E 69 026113
[5] Fortunato S 2010 Phys. Rep. 486 75
[6] Danon L, Guilera A D and Duch J 2005 J. Stat. Mech. P09008
[7] Gan L Y N, Wu Z Y and Gong X L 2015 Chin. Phys. B 24 040503
[8] Chen J R, Hong Z M, Wang L N and Wu L 2014 Chin. Phys. B 23 0118903
[9] Clauset A 2005 Phys. Rev. E 72 026132
[10] Bagrow J P 2008 J. Stat. Mech. P05001
[11] Radicchi F, Castellano C, Cecconi F, Loreto V and Parisi D 2004 Proc. Natl. Acad. Sci. USA 101 2658
[12] Palla G, Derenyi I, Farkas I and Vicsek T 2005 Nature 435 814
[13] Bagrow J P and Bollt E M 2005 Phys. Rev. E 72 046108
[14] Gregory S 2011 J. Stat. Mech. P02017
[15] Zhang S H, Wang R S and Zhang X S 2007 Physica A 374 483
[16] Wang W J, Liu D, Liu X and Pan L 2013 Physica A 392 6578
[17] Psorakis I, Roberts S, Ebden M and Sheldon B 2011 Phys. Rev. E 83 066114
[18] Sun P G, Gao L and Han S 2011 Inform. Sci. 181 1060
[19] Sun P G 2015 Physica A 419 408
[20] Lancichinetti A and Fortunato S 2009 Phys. Rev. E 80 016118
[21] Fortunato S and Barthelemy M 2007 Proc. Natl. Acad. Sci. USA 104 36
[22] Lancichinetti A, Fortunato S and Radicchi F 2008 Phys. Rev. E 78 046110
[23] Liang Z W, Li J P, Yang F and Athina P 2014 Chin. Phys. B 23 098902
[24] Sun H L, Huang J B, Tian Y Q and Liu H L 2015 Chin. Phys. B 24 018703
[25] Shen Y 2014 Physica A 393 560
[26] Chang Z C, Chen H C, Liu Y, Yu H T and Huang R Y 2015 Acta Phys. Sin. 64 0218901 (in Chinese)
[27] Nepusz T, Petroczi A, Negyessy L and Bazso F 2008 Phys. Rev. E 77 016107
[28] Zachary W W 1977 J. Anthropol. Res. 33 452
[29] http://www.weizmann.ac.il/mcb/UriAlon/
[30] Guimerá R, Marta S P, Luís A and Amaral N 2004 Phys. Rev. E 70 025101
[1] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[2] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[3] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[4] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[5] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[6] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[7] A novel similarity measure for mining missing links in long-path networks
Yijun Ran(冉义军), Tianyu Liu(刘天宇), Tao Jia(贾韬), and Xiao-Ke Xu(许小可). Chin. Phys. B, 2022, 31(6): 068902.
[8] Influence fast or later: Two types of influencers in social networks
Fang Zhou(周方), Chang Su(苏畅), Shuqi Xu(徐舒琪), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2022, 31(6): 068901.
[9] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[10] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[11] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[12] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[13] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[14] Learnable three-dimensional Gabor convolutional network with global affinity attention for hyperspectral image classification
Hai-Zhu Pan(潘海珠), Mo-Qi Liu(刘沫岐), Hai-Miao Ge(葛海淼), and Qi Yuan(袁琪). Chin. Phys. B, 2022, 31(12): 120701.
[15] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
No Suggested Reading articles found!