INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effects of Mg doping in the quantum barriers on the efficiency droop of GaN based light emitting diodes |
Yang Liu(刘扬)1, Yongchun Yang(杨永春)1,2 |
1. School of Resource and Environmental Science, Lanzhou University, Lanzhou 730000, China; 2. Key Laboratory of West China's Enviromental Science, Lanzhou 730000, China |
|
|
Abstract The effects of Mg doping in the quantum barriers (QBs) on the efficiency droop of GaN based light emitting diodes (LEDs) were investigated through a duel wavelength method. Barrier Mg doping would lead to the enhanced hole transportation and reduced polarization field in the quantum wells (QWs), both may reduce the efficiency droop. However, heavy Mg doping in the QBs would strongly deteriorate the crystal quality of the QWs grown after the doped QB. When increasing the injection current, the carriers would escape from the QWs between n-GaN and the doped QB and recombine non-radiatively in the QWs grown after the doped QB, leading to a serious efficiency droop.
|
Received: 29 November 2015
Revised: 15 March 2016
Accepted manuscript online:
|
PACS:
|
81.05.Ea
|
(III-V semiconductors)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 41171143). |
Corresponding Authors:
Yongchun Yang
E-mail: yangych@lzu.edu.cn
|
Cite this article:
Yang Liu(刘扬), Yongchun Yang(杨永春) Effects of Mg doping in the quantum barriers on the efficiency droop of GaN based light emitting diodes 2016 Chin. Phys. B 25 058101
|
[1] |
Ozgur U, Liu H, Li X, Ni X and Morko H 2010 Proc. IEEE 98 1180
|
[2] |
Nakamura S 1998 Science 281 956
|
[3] |
Schubert E F, Hunt N E J, Micovic M, Malik R J, Sivco D L, Cho A Y and Zydzik G J 1994 Science 265 943
|
[4] |
Pimputkar S, Speck J S, DenBaars S P and Nakamura S 2009 Nat. Photon. 3 180
|
[5] |
Rogach A L, Gaponik N, Lupton J M, Bertoni C, Gallardo D E, Dunn S, Pira N L, Paderi M, Repetto P, Romanov S G, Dwyer C O, Torres C M S and Eychmüller A 2008 Angew. Chem. Int. Edit. 47 6538
|
[6] |
Olvera-Gonzalez E, Alaniz-Lumbreras D, Ivanov-Tsonchev R, Villa-Hernandez J, Olvera-Olvera C, Gonzalez-Ramirez E, Araiza-Esquivela M, Torres-Argüellesd V and Castañoc V l 2013 Comput. Electron. Agr. 92 48
|
[7] |
Komine T and Nakagawa M 2004 IEEE Trans. Consum. Electron. 50 100
|
[8] |
Vucic J, Kottke C, Nerreter S, Langer K D and Walewski J W 2010 J. Lightw. Technol. 28 3512
|
[9] |
Guo L, Eloholma M and Halonen L 2007 Int. Rev. Electron. Eng. I 2 14
|
[10] |
Byun J, Hong I, Lee B and Park S. 2013 IEEE T. Consum. Electron. 59 70
|
[11] |
Zhao Y K, Li Y F, Huang Y P, Wang H, Su X L, Ding W and Yun F 2015 Chin. Phys. B 24 056806
|
[12] |
Meyaard D S, Lin G-B, Shan Q, Cho J, Schubert E F, Shim H, Kim M H and Sone C 2011 Appl. Phys. Lett. 99 251115
|
[13] |
Meyaard D S, Lin G B, Cho J, Schubert E F, Shim H, Han S H, Kim M H, Sone C and Kim Y S 2013 Appl. Phys. Lett. 102 251114
|
[14] |
Si Z, Wei T B, Ma J, Yan J C, Wei X C, Lu H X, Fu B L, Zhu S X, Liu Z, Wang J X and Li J M 2013 ECS Solid. State Lett. 2 R37
|
[15] |
Ji Y, Zhang Z H, Tan S T, Ju Z G, Kyaw Z, Hasanov N, Liu W, Sun X W and Demir H V 2013 Opt. Lett. 38 202
|
[16] |
Huang C Y, Yan Q, Zhao Y, Fujito K, Feezell D, Van de Walle C G, Speck J S, DenBaars S P and Nakamura S 2011 Appl. Phys. Lett. 99 141114
|
[17] |
Han S H, Cho C Y, Lee S J, Park T Y, Kim T H, Park S H, Kang S W, Kim J W, Kim Y C and Park S J 2010 Appl. Phys. Lett. 96 051113.
|
[18] |
Hums C, Finger T, Hempel T, Christen J, Dadgar A, Hoffmann A and Krost A 2007 J. Appl. Phys. 101 033103
|
[19] |
Beaumont B, Haffouz S and Gibart P. 1998 Appl. Phys. Lett. 72 921
|
[20] |
Namkoong G, Trybus E, Lee K K, Moseley M, Doolittle W A and Look D C. 2008 Appl. Phys. Lett. 93 172112
|
[21] |
Köhler K, Stephan T, Perona A, Wiegert J, Maier M, Kunzer M and Wagner J 2005 J. Appl. Phys. 97 104914
|
[22] |
Köhler K, Gutt R, Wiegert J and Kirste L 2013 J. Appl. Phys. 113 073514
|
[23] |
Wu X, Liu J, Xiong C, Zhang J, Quan Z, Mao Q and Jiang F 2013 J. Appl. Phys. 114 103102
|
[24] |
Zhiting L, Rui H, Guoqiang L and Shuguang Z 2015 Jpn. J. Appl. Phys. 54 022102
|
[25] |
Zhang N, Liu Z, Si Z, Ren P, Wang X D, Feng X X, Dong P, Du C X, Zhu S X, Fu B L, Lu H X, Li J M and Wang J X 2013 Chin. Phys. Lett. 30 087101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|