INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Aluminum incorporation efficiencies in A-and C-plane AlGaN grown by MOVPE |
Dong-Yue Han(韩东岳), Hui-Jie Li(李辉杰), Gui-Juan Zhao(赵桂娟), Hong-Yuan Wei(魏鸿源), Shao-Yan Yang(杨少延), Lian-Shan Wang(汪连山) |
Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract The aluminum incorporation efficiencies in nonpolar A-plane and polar C-plane AlGaN films grown by metalorganic vapour phase epitaxy (MOVPE) are investigated. It is found that the aluminum content in A-plane AlGaN film is obviously higher than that in the C-plane sample when the growth temperature is above 1070 ℃. The high aluminum incorporation efficiency is beneficial to fabricating deep ultraviolet optoelectronic devices. Moreover, the influences of the gas inlet ratio, the V/III ratio, and the chamber pressure on the aluminum content are studied. The results are important for growing the AlGaN films, especially nonpolar AlGaN epilayers.
|
Received: 07 October 2015
Revised: 29 December 2015
Accepted manuscript online:
|
PACS:
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
74.70.Dd
|
(Ternary, quaternary, and multinary compounds)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61504128, 61504129, 61274041, and 11275228), the National Basic Research Program of China (Grant No. 2012CB619305), the National High Technology Research and Development Program of China (Grant Nos. 2014AA032603, 2014AA032609, and 2015AA010801), and the Guangdong Provincial Scientific and Technologic Planning Program, China (Grant No. 2014B010119002). |
Corresponding Authors:
Hui-Jie Li
E-mail: hjli2009@semi.ac.cn
|
Cite this article:
Dong-Yue Han(韩东岳), Hui-Jie Li(李辉杰), Gui-Juan Zhao(赵桂娟), Hong-Yuan Wei(魏鸿源), Shao-Yan Yang(杨少延), Lian-Shan Wang(汪连山) Aluminum incorporation efficiencies in A-and C-plane AlGaN grown by MOVPE 2016 Chin. Phys. B 25 048105
|
[1] |
Mayes K, Yasan A, McClintock R, Shiell D, Darvish S R, Kung P and Razeghi M 2004 Appl. Phys. Lett. 84 1046
|
[2] |
Shatalov M, Sun W H, Lunev A, Hu X H, Dobrinsky A, Bilenko Y, Yang J W, Shur M, Gaska R, Moe C, Garrett G and Wraback M 2012 Appl. Phys. Express 5 082101
|
[3] |
Sang L W, Qin Z X, Fang H, Zhang Y Z, Li T, Xu Z Y, Yang Z J, Shen B, Zhang G Y, Li S P, Yang W H, Chen H Y, Liu D Y and Kang J Y 2009 Chin. Phys. Lett. 26 117801
|
[4] |
Yoshida H, Yamashita Y, Kuwabara M and Kan H 2008 Appl. Phys. Lett. 93 241106
|
[5] |
Xie Z L, Zhang R, Xiu X Q, Han P, Liu B, Chen L, Yu H Q, Jiang R L, Shi Y and Zheng Y D 2007 Acta Phys. Sin. 56 6717 (in Chinese)
|
[6] |
Zhao D G, Zhu J J, Jiang D S, Yang H, Liang J W, Li X Y and Gong H M 2006 J. Cryst. Growth 289 72
|
[7] |
Jung S, Chang Y, Bang K H, Kim H G, Choi Y H, Hwang S M and Baik K H 2012 Semicond. Sci. Technol. 27 024017
|
[8] |
Mihopoulos T G, Gupta V and Jensen K F 1998 J. Cryst. Growth 195 733
|
[9] |
Kondratyev A V, Talalaev R A, Lundin W V, Sakharov A V, Tsatsul'nikov A V, Zavarin E E, Fomin A V and Sizov D S 2004 J. Cryst. Growth 272 420
|
[10] |
Dauelsberg M, Brien D, Rauf H, Reiher F, Baumgartl J, Haberlen O, Segal A S, Lobanova A V, Yakovlev E V and Talalaev R A 2014 J. Cryst. Growth 393 103
|
[11] |
Kang T T, Liu X, Zhang R Q, Hu W G, Cong G, Zhao F A and Zhu Q 2006 Appl. Phys. Lett. 89 071113
|
[12] |
Xu X Q, Guo Y, Liu X L, Liu J M, Song H P, Zhang B A, Wang J, Yang S Y, Wei H Y, Zhu Q S and Wang Z G 2011 Cryst. Eng. Comm. 13 1580
|
[13] |
Wang J X, Wang L S, Yang S Y, Li H J, Zhao G J, Zhang H, Wei H Y, Jiao C M, Zhu Q S and Wang Z G 2014 Chin. Phys. B 23 026801
|
[14] |
Kim H J, Choi S, Yoo D, Ryou J H and Dupuis R D 2008 J. Cryst. Growth 310 4880
|
[15] |
Song K M, Kim J M, Kang B K, Yoon D H, Kang S, Lee S W and Lee S N 2012 Appl. Phys. Lett. 100 212103
|
[16] |
Yakovlev E V, Talalaev R A, Segal A S, Lobanova A, Lundin W V, Zavarin E E, Sinitsyn M A, Tsatsulnikov A F and Nikolaev A E 2008 J. Cryst. Growth 310 4862
|
[17] |
Zavarin E E, Sizov D S, Lundin W V, Tsatsulnikov A F, Talalaev R A, Kondratyev A V, and Bord O V 2005 Proceedings of the Fifteenth International European Conference on Chemical Vapor Deposition, September 4-9, 2005, Bochum, Germany, p. 299
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|