Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 044101    DOI: 10.1088/1674-1056/25/4/044101

Soliton excitation in the pass band of the transmission line based on modulation

Guoying Zhao(赵帼英)1, Feng Tao(陶锋)2, Weizhong Chen(陈伟中)3
1 School of Computer Science and Technology, Anhui University of Technology, Ma'anshan 243002, China;
2 School of Electrical and Information Engineering, Anhui University of Technology, Ma'anshan 243002, China;
3 Key Laboratory of Modern Acoustics, Ministry of Education, and Institution of Acoustics, Nanjing University, Nanjing 210093, China

We numerically investigate the excitation of soliton waves in the nonlinear electrical transmission line formed by many cells. When the periodic driving voltage with frequency in the pass band closing to the cutoff frequency is applied to the endpoint of the whole line, the soliton wave can be generated. The numerical results show that the soliton wave generation mainly depends on the self modulation associated with the nonlinear effect. In this study, the lower subharmonic component is also observed in the frequency spectrum. To further understand this phenomenon, we study the dependence of the subharmonic power spectrum and frequency on the forcing amplitude and frequency numerically, and find that the subharmonic frequency increases with the gradual growth of the driving amplitude.

Keywords:  soliton      nonlinear transmission line      modulation  
Received:  22 July 2015      Revised:  16 November 2015      Accepted manuscript online: 
PACS:  41.20.-q (Applied classical electromagnetism)  
  05.45.-a (Nonlinear dynamics and chaos)  
  84.40.Az (Waveguides, transmission lines, striplines)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11174145 and 11334005) and the Research Foundation for Young Scientists of Anhui University of Technology (Grant No. QZ201318).

Corresponding Authors:  Weizhong Chen     E-mail:

Cite this article: 

Guoying Zhao(赵帼英), Feng Tao(陶锋), Weizhong Chen(陈伟中) Soliton excitation in the pass band of the transmission line based on modulation 2016 Chin. Phys. B 25 044101

[1] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A: Math. Gen. 14 453
[2] Remoissenet M 1999 Waves Called Solitons, 3rd edn. (Berlin: Springer)
[3] Muroya K, Saitoh N and Watanabe S 1982 J. Phys. Soc. Jpn. 51 1024
[4] Marquie P, Bilbault J M and Remoissenet M 1994 Phys. Rev. E 49 828
[5] Taverner D 1998 Opt. Lett. 23 328
[6] Alfimov G and Konotop V V 2000 Physica D 146 307
[7] Essimbi B Z and Barashenkov I V 2002 J. Phys. Soc. Jpn. 71 448
[8] Leon J and Spire A 2004 Phys. Lett. A 327 474
[9] Yamgoué S B, Morfu S and Marquié P 2007 Phys. Rev. E 75 036211
[10] Geniet F and Leon J 2002 Phys. Rev. Lett. 89 134102
[11] Geniet F and Leon J 2003 J. Phys.: Condens. Matter 15 2933
[12] Santibanez F, Munoz R, Caussarieu A, Job S and Melo F 2011 Phys. Rev. E 84 026604
[13] Truskinovsky L 2014 Phys. Rev. E 90 042903
[14] Du Y J, Xie X T, Yang Z Y and Bai J T 2015 Acta Phys. Sin. 64 064202 (in Chinese)
[15] Li Q Y, Zhao F, He P B and Li Z D 2015 Chin. Phys. B 24 037508
[16] Yemélé D, Marquié P and Bilbault J M 2003 Phys. Rev. E 68 016605
[17] Rapti Z, Kevrekidis P G, Smerzi A and Bishop A R 2004 J. Phys. B: At. Mol. Opt. Phys. 37 S257
[18] Hirota R and Suzuki K 1970 J. Phys. Soc. Jpn. 28 1366
[19] Toda M 1967 J. Phys. Soc. Jpn. 23 501
[20] Scott A C 1970 Active and Nonlinear Wave Propagation in Electronics (New York: Wiley-Interscience)
[21] Yaakobi O, Friedland L, Macklin C and Siddiqi I 2013 Phys. Rev. B 87 144301
[22] Tse Ve Koon K, Leon J, Marquié P and Tchofo-Dinda P 2007 Phys. Rev. E 75 066604
[23] Hu B, Li B W and Zhao H 2000 Phys. Rev. E 61 3828
[24] Li B W, Wang L and Casati G 2004 Phys, Rev. Lett. 93 184301
[25] Li B W, Lan J H and Wang L 2005 Phys. Rev. Lett. 95 104302
[26] Tao F, Chen W Z, Xu W, Pan J T and Du S D 2011 Phys. Rev. E 83 056605
[27] Tao F, Chen W Z, Xu W and Du S D 2012 Chin. Phys. B 21 014101
[28] Tao F, Chen W Z, Xu W and Du S D 2012 Acta Phys. Sin. 61 134103 (in Chinese)
[29] Tao F, Chen W Z, Pan J T, Xu W and Du S D 2012 Chaos, Solitons & Fractals 45 810
[30] Hasegawa A 1984 Opt. Lett. 9 288
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[3] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[4] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[5] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[6] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[7] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[8] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[9] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[10] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[11] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[12] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[13] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[14] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[15] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
No Suggested Reading articles found!