Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 043401    DOI: 10.1088/1674-1056/25/4/043401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Differential cross sections for electron impact excitation of molecular hydrogen using the momentum-space multichannel optical method

Yuan-Cheng Wang(王远成)1, Jia Ma(马佳)2, Ya-Jun Zhou(周雅君)3
1 College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China;
2 College of Science, Shenyang Aerospace University, Shenyang 110136, China;
3 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  In the present work, the momentum-space multichannel optical method is employed in four-state close-coupling calculations to study the electronic excitation of H2 molecules by electron-impact. Particularly, differential cross sections for the X1Σg+→b3Σu+, X1Σg+→a3Σg+, and X1Σg+→c3Πu transitions are reported. Comparison is made with the available experimental and theoretical results.
Keywords:  cross section      electronic excitation      molecule  
Received:  09 December 2015      Revised:  17 January 2016      Accepted manuscript online: 
PACS:  34.80.Gs (Molecular excitation and ionization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11447158 and 11404223).
Corresponding Authors:  Yuan-Cheng Wang     E-mail:  rickywangyc@aliyun.com

Cite this article: 

Yuan-Cheng Wang(王远成), Jia Ma(马佳), Ya-Jun Zhou(周雅君) Differential cross sections for electron impact excitation of molecular hydrogen using the momentum-space multichannel optical method 2016 Chin. Phys. B 25 043401

[1] Trajmar S, Cartwright D C, Rice J K, Brinkmann R T and Kupperman A 1968 J. Chem. Phys. 49 5464
[2] Weingartshofer A, Ehrhardt H, Hermann V and Linder F 1970 Phys. Rev. A 2 294
[3] Hall R I and Andric L 1984 J. Phys. B: At. Mol. Opt. Phys. 17 3815
[4] Khakoo M A, Trajmar S, McAdams R, Shyn T W 1987 Phys. Rev. A 35 2832
[5] Khakoo M A and Segura J 1994 J. Phys. B: At. Mol. Opt. Phys. 27 2355
[6] Wrkich J, Mathews D, Kanik I, Trajmar S and Khakoo M A 2002 J. Phys. B: At. Mol. Opt. Phys. 35 4695
[7] Baluja K L, Noble C J and Tennyson J 1985 J. Phys. B: At. Mol. Opt. Phys. 18 L851
[8] Schneider B I and Collins L A 1985 J. Phys. B: At. Mol. Opt. Phys. 18 L857
[9] Lima M A P, Gibson T L, Winifred M H and McKoy V 1985 J. Phys. B: At. Mol. Opt. Phys. 18 L865
[10] Lima M A P, Gibson T L and McKoy V 1988 Phys. Rev. A 38 4527
[11] Lee M-T, Fujimoto M M, Kroin T and Iga I 1996 J. Phys. B: At. Mol. Opt. Phys. 29 L425
[12] Wang Y C, Zhou Y J and Ma J 2013 Chin. Phys.Lett. 30 073401
[13] Parker S D, McCurdy C W, Rescigno T N and Lengsfield III B H 1991 Phys. Rev. A 43 3514
[14] Branchett S E, Tennyson J and Morgan L A 1991 J. Phys. B: At. Mol. Opt. Phys. 24 3479
[15] Machado A M, Fujimoto M M, Taveira A M A, Brescansin L M and Lee M T 2001 Phys. Rev. A 63 032707
[16] da Costa R F, da Paixã F J and Lima M A P 2005 J. Phys. B: At. Mol. Opt. Phys. 38 4363
[17] McCarthy I E and Rossi A M 1994 Phys. Rev. A 49 4645
[18] Rossi A M and McCarthy I E 1995 J. Phys. B: At. Mol. Opt. Phys. 28 3593
[19] Liu W W, Zhou Y J and Wang Z G 2003 Chin. Phys. Lett. 20 1944
[20] Zheng Z, Chi B Q and Zhou Y J 2006 Chin. Phys. Lett. 23 1169
[21] Wang Y C, Ma J and Zhou Y J 2013 Chin. Phys. B 22 023402
[22] Gallup G A 1993 J. Phys. B: At. Mol. Opt. Phys. 26 759
[23] Yoon J S, Song M Y, Han J M, Hwang S H, Chang W S, Lee B J and Itikawa Y 2008 J. Phys. Chem. Ref. Data 37 913
[1] A simple semiempirical model for the static polarizability of electronically excited atoms and molecules
Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski. Chin. Phys. B, 2023, 32(4): 043301.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[4] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[5] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[6] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[7] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[8] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[9] New experimental measurement of natSe(n, γ) cross section between 1 eV to 1 keV at the CSNS Back-n facility
Xin-Rong Hu(胡新荣), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Gong-Tao Fan(范功涛), Hong-Wei Wang(王宏伟), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙), Ying-Du Liu(刘应都), Yue Zhang(张岳), Xin-Xiang Li(李鑫祥), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Bing Jiang(姜炳), De-Xin Wang(王德鑫), Suyalatu Zhang(张苏雅拉吐), Zhen-Dong An(安振东), Yu-Ting Wang(王玉廷), Chun-Wang Ma(马春旺), Jian-Jun He(何建军), Jun Su(苏俊), Li-Yong Zhang(张立勇), Yu-Xuan Yang(杨宇萱), Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(8): 080101.
[10] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[11] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[12] Measurement of 232Th (n,γ) cross section at the CSNS Back-n facility in the unresolved resonance region from 4 keV to 100 keV
Bing Jiang(姜炳), Jianlong Han(韩建龙), Jie Ren(任杰), Wei Jiang(蒋伟), Xiaohe Wang(王小鹤), Zian Guo(郭子安), Jianglin Zhang(张江林), Jifeng Hu(胡继峰), Jingen Chen(陈金根), Xiangzhou Cai(蔡翔舟), Hongwei Wang(王宏伟), Longxiang Liu(刘龙祥), Xinxiang Li(李鑫祥), Xinrong Hu(胡新荣), and Yue Zhang(张岳). Chin. Phys. B, 2022, 31(6): 060101.
[13] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[14] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[15] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
No Suggested Reading articles found!