Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 043101    DOI: 10.1088/1674-1056/25/4/043101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Ab initio study on the electronic states and laser cooling of AlCl and AlBr

Rong Yang(杨荣)1,2, Bin Tang(唐斌)3, Tao Gao(高涛)2
1 College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
2 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
3 Institute of Finance & Trade, Chongqing City Management College, Chongqing 401331, China
Abstract  

We investigate whether AlCl and AlBr are promising candidates for laser cooling. We report new ab initio calculations on the ground state X1Σ+ and two low-lying states (A1Π and a3Π) of AlCl and AlBr. The calculated spectroscopic constants show good agreement with available theoretical and experimental results. We also obtain the permanent dipole moments (PDMs) curve at multi-reference configuration interaction (MRCI) level of theory. The transition properties of A1Π and a3Π states are predicted, including the transition dipole moments (TDMs), Franck-Condon factors (FCFs), radiative times and radiative width. The calculated radiative lifetimes are of the order of a nanosecond, implying that they are sufficiently short for rapid laser cooling. Both AlCl and AlBr have highly diagonally distributed FCFs which are crucial requirement for molecular laser cooling. The results demonstrate the feasibility of laser cooling AlCl and AlBr, and we propose laser cooling schemes for AlCl and AlBr.

Keywords:  AlCl      AlBr      laser cooling  
Received:  26 September 2015      Revised:  29 December 2015      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  37.10.Mn (Slowing and cooling of molecules)  
  87.80.Cc (Optical trapping)  
Corresponding Authors:  Tao Gao     E-mail:  gaotao@scu.edu.cn

Cite this article: 

Rong Yang(杨荣), Bin Tang(唐斌), Tao Gao(高涛) Ab initio study on the electronic states and laser cooling of AlCl and AlBr 2016 Chin. Phys. B 25 043101

[1] Shuman E S, Barry J F and DeMille D 2010 Nature 467 820
[2] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y and Ye J 2013 Phys. Rev. Lett. 110 143001
[3] Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R and Sauer B E 2014 Phys. Rev. A 89 053416
[4] Shen J, Borodin A, Hansen M and Schiller S 2012 Phys. Rev. A 85 032519
[5] Wang Y Z 2011 Physics 40 421 (in Chinese)
[6] Xu Z, Dang W R and Wang Y Z 2008 Physics 37 708 (in Chinese)
[7] Zhou S Y, Long Q, Zhou S Y, Fu H X and Wang Y Z 2002 Physics 31 481 (in Chinese)
[8] Di Rosa M D 2014 Eur. Phys. J. D 31 395
[9] Wells N and Lane I C 2011 Phys. Chem. Chem. Phys. 13 19018
[10] Dyke J M, Kirby C, Morris A, Gravenor B W J, Klein R and Rosrnus P 1984 Chem. Phys. 88 289
[11] Rosenwaks S 1976 J. Chem. Phys. 65 3668
[12] Hedderich H G, Dulick M and Bernath P F 1993 J. Chem. Phys. 99 8363
[13] Mahanti P C 1934 Z. Phys. 88 550
[14] Hildenbrand D L and Theard L P 1969 J. Chem. Phys. 50 5350
[15] Mahieu E, Dubois I and Bredohl H 1989 J. Mol. Spectrosc. 134 317
[16] Mahieu E, Dubois I and Bredohl H 1989 J. Mol. Spectrosc. 138 264
[17] Sharma D 1951 Astrophys. J. 113 210
[18] Saksena M D, Dixit V S and Singh M 1998 J. Mol. Spectrosc. 187 1
[19] Langhoff S R, Bauschlicher C W Jr and Taylor P R 1988 J. Chem. Phys. 88 5715
[20] Brites V, Hammout'ene D and Hochlaf M 2008 J. Phys. Chem. A 112 13419
[21] Bredohl H, Dubois I, Mahieu E and Mellen F 1991 J. Mol. Spectrosc. 145 12
[22] Fleming P E and Mathews C W 1996 J. Mol. Spectrosc. 175 31
[23] Hamade Y, Taher F and Monteil Y 2010 Int. J. Quantum Chem. 110 1030
[24] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[25] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[26] Werner H J, Knowles P J, Manby F R, Schutz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A and Rauhut G et al. 2010 Molpro (Birmingham: University of Birmingham AL; see http://www.molpro.net.)
[27] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[28] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[29] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[30] Douglas N and Kroll N M 1974 Ann. Phys. 82 89
[31] Hess B A 1986 Phys. Rev. A 33 3742
[32] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels, CPRR-661 (Waterloo: University of Waterloo, ON, Canada)
[33] Woon D E and Dunning T H Jr 1993 J. Chem. Phys. 98 1358
[34] Peterson K A, Figgen D, Goll E, Stoll H and Dolg M 2003 J. Chem. Phys. 119 11113
[35] Wyse F C and Gordy W 1972 J. Chem. Phys. 56 2130
[36] Ram R S, Rai S B, Upadhya K N and Rai D K 1982 Phys. Scr. 26 383
[37] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure (New York: Van Nostrand Reinhold)
[38] Griffith W B, J R and Mathews C W 1984 J. Mol. Spectrosc. 104 347
[39] Rogowski D F and Fontijn A 1987 Chem. Phys. Lett. 137 219
[1] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[2] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[3] Configuration interaction study on low-lying states of AlCl molecule
Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(5): 053101.
[4] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[5] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[6] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[7] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[8] Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments
Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2018, 27(9): 094201.
[9] Laser cooling of CH molecule: Insights from ab initio study
Jie Cui(崔洁), Jian-Gang Xu(徐建刚), Jian-Xia Qi(祁建霞), Ge Dou(窦戈), Yun-Guang Zhang(张云光). Chin. Phys. B, 2018, 27(10): 103101.
[10] Quantum feedback cooling of two trapped ions
Shuo Zhang(张硕), Wei Wu(吴伟), Chun-Wang Wu(吴春旺), Feng-Guang Li(李风光), Tan Li(李坦), Xiang Wang(汪翔), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2017, 26(7): 074205.
[11] Development of adjustable permanent magnet Zeeman slowers for optical lattice clocks
Xiao-Hang Zhang(张晓航), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(5): 053701.
[12] BaF radical: A promising candidate for laser cooling and magneto-optical trapping
Liang Xu(许亮), Bin Wei(魏斌), Yong Xia(夏勇), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平). Chin. Phys. B, 2017, 26(3): 033702.
[13] Tuning the velocity and flux of a low-velocity intense source of cold atomic beam
Shu Chen(陈姝), Ying-Ying Li(李营营), Xue-Shu Yan(颜学术), Hong-Bo Xue(薛洪波), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2017, 26(11): 113703.
[14] Automatic compensation of magnetic field for a rubidium space cold atom clock
Lin Li(李琳), Jingwei Ji(吉经纬), Wei Ren(任伟), Xin Zhao(赵鑫), Xiangkai Peng(彭向凯), Jingfeng Xiang(项静峰), Desheng Lü(吕德胜), Liang Liu(刘亮). Chin. Phys. B, 2016, 25(7): 073201.
[15] Microwave-mediated magneto-optical trap for polar molecules
Dizhou Xie(谢笛舟), Wenhao Bu(卜文浩), Bo Yan(颜波). Chin. Phys. B, 2016, 25(5): 053701.
No Suggested Reading articles found!