Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 038504    DOI: 10.1088/1674-1056/25/3/038504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Mobility enhancement of strained GaSb p-channel metal—oxide—semiconductor field-effect transistorswith biaxial compressive strain

Yan-Wen Chen(陈燕文)1, Zhen Tan(谭桢)2, Lian-Feng Zhao(赵连锋)2,3, Jing Wang(王敬)2, Yi-Zhou Liu(刘易周)1,Chen Si(司晨)4, Fang Yuan(袁方)2, Wen-Hui Duan(段文晖)1, Jun Xu(许军)2
1. Department of Physics, Tsinghua University, Beijing 100084, China;
2. Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084, China;
3. Department of Electrical Engineering, Princeton University, Princeton, Princeton, NJ 08544, USA;
4. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Abstract  Various biaxial compressive strained GaSb p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) are experimentally and theoretically investigated. The biaxial compressive strained GaSb MOSFETs show a high peak mobility of 638 cm2/V·s, which is 3.86 times of the extracted mobility of the fabricated GaSb MOSFETs without strain. Meanwhile, first principles calculations show that the hole effective mass of GaSb depends on the biaxial compressive strain. The biaxial compressive strain brings a remarkable enhancement of the hole mobility caused by a significant reduction in the hole effective mass due to the modulation of the valence bands.
Keywords:  GaSb      metal-oxide-semiconductor field-effect transistor      strain      first principles calculations  
Received:  19 October 2015      Revised:  09 November 2015      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  81.05.Ea (III-V semiconductors)  
  77.55.dj (For nonsilicon electronics (Ge, III-V, II-VI, organic electronics))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00602) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02708-002).
Corresponding Authors:  Jun Xu     E-mail:  junxu@tsinghua.edu.cn

Cite this article: 

Yan-Wen Chen(陈燕文), Zhen Tan(谭桢), Lian-Feng Zhao(赵连锋), Jing Wang(王敬), Yi-Zhou Liu(刘易周),Chen Si(司晨), Fang Yuan(袁方), Wen-Hui Duan(段文晖), Jun Xu(许军) Mobility enhancement of strained GaSb p-channel metal—oxide—semiconductor field-effect transistorswith biaxial compressive strain 2016 Chin. Phys. B 25 038504

[1] Chau R, Datta S, Doczy M, Doyle B, Jin J, Kavalieros J, Majumdar A, Metz M and Radosavljevic M 2005 IEEE Trans. Nanotechnol. 4 153
[2] Takagi S, Irisawa T, Tezuka T, Numata T, Nakaharai S, Hirashita N, Moriyama Y, Usuda K, Toyoda E, Dissanayake S, Shichijo M, Nakane R, Sugahara S, Takenaka M and Sugiyama N 2008 IEEE Trans. Elec-tron. Dev. 55 21
[3] Tan Z, Zhao L F, Wang J and Xu J 2013 ECS Solid State Lett. 2 61
[4] Chin H C, Gong X, Liu X, Lin Z and Yeo Y C 2009 Symp. VLSI Tech. Dig. p. 244
[5] Zhao L F, Tan Z, Wang J and Xu J 2014 Chin. Phys. B 23 78102
[6] Oh H J, Lin J Q, Suleiman S A B, Lo G Q, Kwong D L, Chi D Z and Lee S J 2009 Tech. Dig. Int. Electron Devices Meet. p. 339
[7] Wu Y Q, Xu M, Wang R S, Koybasi O and Ye P D 2009 Tech. Dig. Int. Electron Devices Meet. p. 323
[8] Chang H D, Sun B, Xue B Q, Liu G M, Zhao W, Wang S K and Liu H G 2013 Chin. Phys. B 22 077306
[9] Liu C, Zhang Y M, Zhang Y M and Lü H L 2013 Chin. Phys. B 22 076701
[10] Zhao L F, Tan Z, Wang J and Xu J 2014 Appl. Surf. Sci. 289 601
[11] Tan Z, Zhao L F, Wang J and Xu J 2014 Chin. Phys. B 23 017701
[12] Wang C, Xu M, Gu J J, Zhang D W and Ye P D 2012 Electrochem. Solid-State Lett. 15 51
[13] Nainani A, Irisawa T, Yuan Z, Bennett B R, Boos J B, Nishi Y and Saraswat K C 2011 IEEE Trans. Electron. Dev. 58 3407
[14] Yuan Z, Kumar A, Chen C Y, Nainani A, Bennett B R, Boos J B and Saraswat K C 2013 IEEE Electron Device Lett. 34 1367
[15] Zhao L F, Tan Z, Bai R X, Cui N, Wang J and Xu J 2013 Appl. Phys. Express 6 056502
[16] Suthram S, Sun Y, Majhi P, Ok I, Kim H, Harris H R, Goel N, Parthasarathy S, Koehler A, Acosta T, Nishida T, Tseng H H, Tsai W, Lee J, Jammy R and Thompson S E 2008 Symp. VLSI Tech. Dig. p. 182
[17] Pikus G E and Bir G L 1974 Symmetry and Strained-Induced Effects in Semiconductors (New York: Wiley)
[18] Kopf C, Kosina H and Selberherr S 1997 Solid-State Electron. 41 1139
[19] Chin H C, Gong X, Liu X and Yeo Y C 2009 IEEE Electron Device Lett. 30 805
[20] Xia L and del Alamo J A 2009 Appl. Phys. Lett. 95 243504
[21] Nainani A, Yum J, Barnett J, Hill R, Goel N, Huang J, Majhi P, Jammy R and Saraswat K C 2010 Appl. Phys. Lett. 96 242110
[22] Xu M, Wang R S and Ye P D 2011 IEEE Electron Device Lett. 32 883
[23] Zhao L F, Tan Z, Wang J and Xu J 2015 Chin. Phys. B 24 018501
[24] Chu R L, Chiang T H, Hsueh W J, Chen K H, Lin K Y, Brown G J, Chyi J I, Kwo J and Hong M 2014 Appl. Phys. Lett. 105 182106
[25] Yokoyama M, Nishi K, Kim S, Yokoyama H, Takenaka M and Takagi S 2014 Appl. Phys. Lett. 104 093509
[26] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[27] Dutta P S, Bhat H L and Kumar V 1997 J. Appl. Phys. 81 5821
[28] Ning F, Tang L M, Zhang Y and Chen K Q 2013 J. Appl. Phys. 114 224304
[29] Song A Y, Bhat R, Bouzi P, Zah C E and Gmachl C F 2015 arxiv: 1507.06016
[30] Nguyen B M, Yi W, Noah R, Thorp J and Sokolich M 2015 Appl. Phys. Lett. 106 032107
[31] Khurgin J B 2008 Appl. Phys. Lett. 93 091104
[32] Ahmad S, Mahanti S D, Hoang K and Kanatzidis M G 2006 Phys. Rev. B 74 155205
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[6] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[7] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Heterogeneous integration of GaSb layer on (100) Si substrate by ion-slicing technique
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), Zheng-Hao Shen(沈正皓), Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Jin Li(李进), Min Liao(廖敏), and Yi-Chun Zhou(周益春). Chin. Phys. B, 2022, 31(7): 076103.
[10] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[11] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[12] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[13] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[14] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[15] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
No Suggested Reading articles found!