Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 037303    DOI: 10.1088/1674-1056/25/3/037303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index

Xu-Feng Li(李旭峰)1, Wei Peng(彭伟)2, Ya-Li Zhao(赵亚丽)3, Qiao Wang(王乔)2, Ji-Lin Wei(魏计林)1
1. School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China;
2. School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China;
3. No. 33 Research Institute of China Electronics Technology Group Corporation, Taiyuan 030024, China
Abstract  In this paper, a subwavelength metal-grating assisted sensor of Kretschmann style that is capable of detecting the sample with a refractive index higher than that of the substrate is proposed. The sensor configuration is similar to the traditional Kretschmann structure, but the metal film is pattered into a grating. As a TM-polarized laser beam impinges from the substrate, a resonant dip point in reflectance curve is produced at a certain incident angle. Our studies indicate that the sensing sensitivity and resolution are affected by the grating's gap and period, and after these parameters have been optimized, a sensing sensitivity of 51.484°/RIU is obtained with a slightly changing resolution.
Keywords:  surface plasmons      sensing      finite-difference time-domain method  
Received:  30 September 2015      Revised:  24 November 2015      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61137005 and 61178067), the Science Foundation of Shanxi Province, China (Grant No. 2013021004-3/2014021021-1), the Pre-studied Project on Weapon Equipment, China (Grant No. 201262401090404), and the Specialized Research Foundation for Doctor of School, China (Grant No. 20122027).
Corresponding Authors:  Xu-Feng Li     E-mail:  xfli@mail.dlut.edu.cn

Cite this article: 

Xu-Feng Li(李旭峰), Wei Peng(彭伟), Ya-Li Zhao(赵亚丽), Qiao Wang(王乔), Ji-Lin Wei(魏计林) A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index 2016 Chin. Phys. B 25 037303

[1] Kretschmann E 1971 Z. Phys. 241 313
[2] Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and Gratings (Vol. 111) (Berlin, Heidelberg: Springer) pp. 1-133
[3] Lee B, Roh S and Park J 2009 Opt. Fiber. Technol. 15 209
[4] Anker J N, Hall P W, Lyandres O, Shah N C, Zhao J and van Duyne R P 2008 Nat. Mater. 7 442
[5] Jain P K and El-Sayed M A 2010 Chem. Phys. Lett. 487 153
[6] Hwang G 2009 Nature 457 618
[7] Salamon Z, Macleod H A and Tollin G 1997 Biochim. Biophys. Acta 1331 131
[8] Abrantes M, Magone M T, Boyd L F and Schuck P 2001 Anal. Chem. 73 2828
[9] Kurihara K and Suzuki K 2002 Anal. Chem. 74 696
[10] Kretschmann E and Raether H 1968 Z. Naturforschung. A 23 2135
[11] Ong B H, Yuan X, Tjin S C, Zhang J and Ng H M 2006 Sens. Actuators. B 114 1028
[12] Gupta B D and Sharma A K 2005 Sens. Actuators. B 107 40
[13] Chen X and Jiang K 2010 Opt. Express 18 1105
[14] Roh S, Chung T and Lee B 2011 Sensors 11 1565
[15] Phan Q H, Nguyen-Huu N and Lo Y L 2014 IEEE Sensors. J. 14 2938
[16] Kawata S, Ono A and Verma P 2008 Nat. Photonics 2 438
[17] Li X F, Pan S, Guo Y N, Wang Q and Zhang Y 2010 J. Opt. Soc. Am. B 27 2141
[18] Guo Y N, Li X F, Pan S, Wang Q, Wang S and Wu Y K 2012 Chin. Phys. B 21 057301
[19] Li X F, Zhang X, Guo Y N, Meng J and Wei J 2013 J. Opt. Soc. Am. B 30 229
[20] Guo K, Liu J L and Zhou K Y 2015 Chin. Phys. B 24 047301
[1] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[2] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[3] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[4] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[5] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[6] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[7] Learnable three-dimensional Gabor convolutional network with global affinity attention for hyperspectral image classification
Hai-Zhu Pan(潘海珠), Mo-Qi Liu(刘沫岐), Hai-Miao Ge(葛海淼), and Qi Yuan(袁琪). Chin. Phys. B, 2022, 31(12): 120701.
[8] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[9] Demonstration of Faraday anomalous dispersion optical filter with reflection configuration
Yi Liu(刘艺), Baodong Yang(杨保东), Junmin Wang(王军民), Wenyi Huang(黄文艺), Zhiyu Gou(缑芝玉), and Haitao Zhou(周海涛). Chin. Phys. B, 2022, 31(1): 017804.
[10] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[11] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[12] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
[13] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[14] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[15] Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain
Fan Liu(刘璠), Xue-Feng Liu(刘雪峰), Ruo-Ming Lan(蓝若明), Xu-Ri Yao(姚旭日), Shen-Cheng Dou(窦申成), Xiao-Qing Wang(王小庆), and Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2021, 30(1): 014208.
No Suggested Reading articles found!