Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 033204    DOI: 10.1088/1674-1056/25/3/033204
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Electron excitation from ground state to first excited state: Bohmian mechanics method

Yang Song(宋阳)1, Shuang Zhao(赵双)2, Fu-Ming Guo(郭福明)2, Yu-Jun Yang(杨玉军)2, Su-Yu Li(李苏宇)2
1. College of Science, Northeast Dianli University, Jilin 132012, China;
2. Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  The excitation process of electrons from the ground state to the first excited state via the resonant laser pulse is investigated by the Bohmian mechanics method. It is found that the Bohmian particles far away from the nucleus are easier to be excited and are excited firstly, while the Bohmian particles in the ground state is subject to a strong quantum force at a certain moment, being excited to the first excited state instantaneously. A detailed analysis for one of the trajectories is made, and finally we present the space and energy distribution of 2000 Bohmian particles at several typical instants and analyze their dynamical process at these moments.
Keywords:  Bohmian mechanics      excited state      quantum force      trajectory  
Received:  17 September 2015      Revised:  23 November 2015      Accepted manuscript online: 
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
Fund: Project supported by the Doctoral Research Start-up Funding of Northeast Dianli University, China (Grant No. BSJXM-201332), the National Natural Science Foundation of China (Grant Nos. 11547114, 11534004, 11474129, 11274141, 11447192, and 11304116), and the Graduate Innovation Fund of Jilin University, China (Grant No. 2015091).
Corresponding Authors:  Fu-Ming Guo, Su-Yu Li     E-mail:  guofm@jlu.edu.cn;suyu11@mails.jlu.edu.cn

Cite this article: 

Yang Song(宋阳), Shuang Zhao(赵双), Fu-Ming Guo(郭福明), Yu-Jun Yang(杨玉军), Su-Yu Li(李苏宇) Electron excitation from ground state to first excited state: Bohmian mechanics method 2016 Chin. Phys. B 25 033204

[1] Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. Lett. 68 3535
[2] Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389
[3] Burnett K, Reed V C and Knight P L 1993 J. Phys. B 26 561
[4] Sargent III M, Scully M O and Lamb Jr. W E 1974 Laser Physics (Addison Wesley, Reading, MA)
[5] Loudon R 1983 The Quantum Theory of Light (New York: Oxford University Press)
[6] Tannor D J 2007 Introduction to Quantum Mechanics (California: University Science Books)
[7] Bohm D 1952 Phys. Rev. 85 166
[8] Bohm D 1952 Phys. Rev. 85 338
[9] Wyatt R E 2005 Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (Springer)
[10] Holland P R 1993 The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics (Cambridge: Cambridge University Press)
[11] Picón A, Benseny A, Mompart J, Vázquez de Aldana J R, Plaja L, Calvo G F and Roso L 2010 New J. Phys. 12 083053
[12] Christov I P 2007 New J. Phys. 9 70
[13] Christov I P 2007 J. Chem. Phys. 127 134110
[14] Christov I P 2008 J. Chem. Phys. 128 244106
[15] Christov I P 2009 J. Phys. Chem. A 113 6016
[16] Christov I P 2011 J. Chem. Phys. 135 044120
[17] Christov I P 2012 J. Chem. Phys. 136 034116
[18] Christov I P 2013 J. At. Mol. Phys. 2013 424570
[19] Oriols X 2007 Phys. Rev. Lett. 98 066803
[20] Lai X Y, Cai Q Y and Zhan M S 2009 European Phys. J. D 53 393
[21] Lai X Y, Cai Q Y and Zhan M S 2009 New J. Phys. 11 113035
[22] Botheron P and Pons B 2010 Phys. Rev. A 82 021404
[23] Cai Q Y, Zhan M S and Lai X Y 2010 Chin. Phys. B 19 020302
[24] Takemoto N and Becker A 2011 J. Chem. Phys. 134 074309
[25] Song Y, Guo F M, Li S Y, Chen J G, Zeng S L and Yang Y J 2012 Phys. Rev. A 86 033424
[26] Wei S S, Li S Y, Guo F M, Yang Y J and Wang B B 2013 Phys. Rev. A 87 063418
[27] Wu J, Augstein B B and de Morisson Faria C F 2013 Phys. Rev. A 88 023415
[28] Song Y, Li S Y, Liu X S, Guo F M and Yang Y J 2013 Phys. Rev. A 88 053419
[29] Dey S and Fring A 2013 Phys. Rev. A 86 022116
[30] Sawada R, Sato T and Ishikawa K L 2014 Phys. Rev. A 86 023404
[31] Christov I P 2006 Opt. Express 14 6906
[32] Vitanov N V, Halfmann T, Shore B W and Bergmann K 2001 Annu. Rev. Phys. Chem. 52 763
[33] Li S, Guo F, Chen A, Yang Y and Jin M 2014 Laser Phys. 24 105202
[34] Li S Y, Guo F M, Wang J, Yang Y J and Jin M X 2015 Chin. Phys. B 24 104205
[1] Quantum and quasiclassical dynamics of C($^{3} P$) + H$_{2}(^{1} \varSigma_{\text{g}}^+)\rightarrow H(^{2} S)$ + CH($^{2} \varPi$) reaction: Coriolis coupling effects and stereodynamics
Dong Liu(刘栋), Lulu Zhang(张路路), Juan Zhao(赵娟), Qin Zhang(张芹), Yuzhi Song(宋玉志), and Qingtian Meng(孟庆田). Chin. Phys. B, 2022, 31(4): 043102.
[2] Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2022, 31(4): 048202.
[3] Geometric quantities of lower doubly excited bound states of helium
Chengdong Zhou(周成栋), Yuewu Yu(余岳武), Sanjiang Yang(杨三江), and Haoxue Qiao(乔豪学). Chin. Phys. B, 2022, 31(3): 030301.
[4] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[5] Molecule opacity study on low-lying states of CS
Rui Li(李瑞), Jiqun Sang(桑纪群), Xiaohe Lin(林晓贺), Jianjun Li(李建军), Guiying Liang(梁桂颖), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(10): 103101.
[6] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[7] Resonance-enhanced two-photon ionization of hydrogen atom in intense laser field investigated by Bohmian-mechanics
Yang Song(宋阳), Shu Han(韩姝), Yu-Jun Yang(杨玉军), Fu-Ming Guo(郭福明), Su-Yu Li(李苏宇). Chin. Phys. B, 2020, 29(9): 093204.
[8] Role of potential on high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser fields
Xu-Xu Shen(申许许), Jun Wang(王俊), Fu-Ming Guo(郭福明), Ji-Gen Chen(陈基根), Yun-Jun Yang(杨玉军). Chin. Phys. B, 2020, 29(8): 083201.
[9] Trajectory engineering via a space-fractional Schrödinger equation with dynamic linear index potential
Yunji Meng(孟云吉), Youwen Liu(刘友文), Haijiang Lv(吕海江). Chin. Phys. B, 2020, 29(5): 054201.
[10] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[11] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[12] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[13] Ionization of two-electron atom (xenon) studied by Bohmian mechanics theory
Yang Song(宋阳), Shu Han(韩姝), Yu-Jun Yang(杨玉军), Fu-Ming Guo(郭福明), and Su-Yu Li(李苏宇). Chin. Phys. B, 2020, 29(11): 113201.
[14] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[15] Find slow dynamic modes via analyzing molecular dynamics simulation trajectories
Chuanbiao Zhang(张传彪) and Xin Zhou(周昕)†. Chin. Phys. B, 2020, 29(10): 108706.
No Suggested Reading articles found!