Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 026402    DOI: 10.1088/1674-1056/25/2/026402
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First principle investigation of the electronic and thermoelectric properties of Mg2C

Kulwinder Kaur and Ranjan Kumar
Department of Physics, Panjab University, Chandigarh-160014 (India)
Abstract  In this paper, electronic and thermoelectric properties of Mg2C are investigated by using first principle pseudo potential method based on density functional theory and Boltzmann transport equations. We calculate the lattice parameters, bulk modulus, band gap and thermoelectric properties (Seebeck coefficient, electrical conductivity, and thermal conductivity) of this material at different temperatures and compare them with available experimental and other theoretical data. The calculations show that Mg2C is indirect band semiconductor with a band gap of 0.75 eV. The negative value of Seebeck coefficient shows that the conduction is due to electrons. The electrical conductivity decreases with temperature and Power factor (PF) increases with temperature. The thermoelectric properties of Mg2C have been calculated in a temperature range of 100 K-1200 K.
Keywords:  semiconductors      thermoelectric and thermo magnetic effects      electric and thermal conductivity      density functional theory  
Received:  15 September 2015      Revised:  25 October 2015      Accepted manuscript online: 
PACS:  64.70.kg (Semiconductors)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  74.25.fc (Electric and thermal conductivity)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Corresponding Authors:  Kulwinder Kaur     E-mail:  kulwinderphysics@gmail.com

Cite this article: 

Kulwinder Kaur, Ranjan Kumar First principle investigation of the electronic and thermoelectric properties of Mg2C 2016 Chin. Phys. B 25 026402

[1] Wood C 1988 Rep. Prog. Phys. 51 459
[2] Liu Z, Watanabe M and Hanabusa M 2001 Thin Solid Films 381 262
[3] Borisenko E V and Filonov A B 2000 General Material Aspects (Berlin: Springer-Verlag) pp. 1-79
[4] DiSalvo F J 1999 Science 285 703
[5] Snyder G J and Ursell T S 2003 Phys. Rev. Lett. 91 148301
[6] Morris R G, Redin R D and Danielson G C 1958 Phys. Rev. 109 1909
[7] Akasaka M, Iida T, Matsumoto A, Yamanaka K, Takanashi Y, Imai T and Hamada N 2008 J. Appl. Phys. 104 13703
[8] Kurakevych O O 2009 J. Superhard Mater. 31 139
[9] Lee C H, Lambrecht W R L, and Segall B 1995 Phys. Rev. B 51 10392
[10] Srepusharawoot P, Blomqvist A, Araujo C M, Scheicher R H and Ahuja R 2010 Phys. Rev. B 82 125439
[11] Corkill J L and Cohen M L 1993 Phys. Rev. B 48 17138
[12] Karttunen J, Fassler T F, Linnolahti M and Pakkanen T A 2011 Inorg. Chem. 50 1733
[13] Yamanaka S 2010 Dalton Trans. 39 1901
[14] Lambert C and Schleyer P V R 1994 Angew. Chem. 106 1187
[15] Bickelhaupt F M, van Eikema Hommes N J R, Fonseca Guerra C and Baerends E J 1996 Organometallics 15 2923
[16] Kurakevych O O, Strobel T A, Kim D Y and Cody G D 2013 Angew. Chem. Int. Ed. 52 8930
[17] Li T, Ju W, Liu H, Cui H, Zhao X, Yong Y and Feng Z 2014 Comput. Mater. Sci. 93 234
[18] Laref S and Laref A 2008 Comput. Matt. Sci. 44 664
[19] Chernatynskiy A and Phillpot S R 2015 Phys. Rev. B 92 064303
[20] J M Ziman 2001 Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Classics Series, Oxford: Clarendon Press)
[21] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3864
[22] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502
[23] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[24] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
[25] Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, Badding J V and Sofo J O 2003 Phys. Rev. B 68 125210
[26] Jodin L, Tobola J, Pecheur P, Scherrer H and Kaprzyk S 2004 Phys. Rev. B 70 184207
[27] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[28] Ma J, Li W and Luo X 2014 Appl. Phys. Lett. 105 082103
[29] Carrete J, Mingo N and Curtarolo S 2014 Appl. Phys. Lett. 105 101907
[30] Murnaghan F D 1944 Proc Natl. Acad. Sci. USA 30 244
[31] Kalarasse F and Bennecer B 2008 J. Phys. Chem. Solids 69 1775
[32] Kurakevych O O and Godec Y L 2014 J. Phys. Chem. C 118 8128
[33] LaBotz R J, Mason D R and O'Kane D F 1963 J. Electrochem. Soc. 110 127
[34] Noda Y, Kon H, Furukawa Y, Otsuka N, Nishida I A and Masumoto K 1992 Mater. Trans. JIM 33 851
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
No Suggested Reading articles found!