Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 024209    DOI: 10.1088/1674-1056/25/2/024209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

19-fs pulse generated by supercontinuum compression

Hua-Qiang Zhang(张华强)1, Peng Wang(王鹏)2, Wen-Jun Liu(刘文军)2, Yi-Lei Yao(姚翳蕾)2, Zhi-Jing Xu(徐志敬)1, Jian Li(李健)3
1. School of Information and Electrical Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China;
2. Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, China;
3. School of Physics and Electronic Science, Shandong Normal University, Jinan 250014, China
Abstract  Supercontinuum generation and compression in a length of 50-mm photonic crystal fiber with pulse of nanojoule energy are investigated theoretically and experimentally. Chirped mirror pair is used for dispersion compensation and pulse compression. Pulse characteristics are measured by frequency-resolved optical gating. And 19-fs pulse is generated.
Keywords:  femtosecond phenomena      multilayer mirror      phase compensation      photonic crystal fiber  
Received:  12 May 2015      Revised:  20 August 2015      Accepted manuscript online: 
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Corresponding Authors:  Wen-Jun Liu     E-mail:  liuwenjun68@siom.ac.cn

Cite this article: 

Hua-Qiang Zhang(张华强), Peng Wang(王鹏), Wen-Jun Liu(刘文军), Yi-Lei Yao(姚翳蕾), Zhi-Jing Xu(徐志敬), Jian Li(李健) 19-fs pulse generated by supercontinuum compression 2016 Chin. Phys. B 25 024209

[1] Zhang L Y, Pu S Z, Yang Z Y, Zhang L Y and Pu S Z 2014 Chin. Phys. Lett. 31 114206
[2] You L F, Ling W J, Li K, Zhang M X, Zuo Y Y and Wang Y S 2014 Acta Phys. Sin. 63 214203 (in Chinese)
[3] Liu Z Y, Shi Y C and Hu B T 2014 Acta Phys. Sin. 63 184206 (in Chinese)
[4] Zhang L, Han H N, Hou L, Yu Z J, Zhu Z, Jia Y L and Wei Z Y 2014 Acta Phys. Sin. 63 194208 (in Chinese)
[5] Heidt A, Rothhardt J, Hartung A, Bartelt H, Rohwer E, Limpert J and Tünnermann A 2011 Opt. Express 19 13873
[6] Jocher C, Eidam T, Hädrich S, Limpert J and Tünnermann A 2012 Opt. Lett. 37 4407
[7] Steinmeyer G and Stibenz G 2006 Appl. Phys. B 82 175
[8] Huang Z Y, Leng Y X and Dai Y 2014 Chin. Phys. B 23 124210
[9] Huang Z Y, Wang D, Leng Y X and Dai Y 2015 Chin. Phys. B 24 014212
[10] Nurhuda M, Suda A, Bohman S, Yamaguchi S and Midorikawa K 2006 Phys. Rev. Lett. 97 153902
[11] Akturk S, Arnold C L, Zhou B and Mysyrowicz A 2009 Opt. Lett. 34 1462
[12] Chen J, Suda A, Takahashi E J, Nurhuda M and Midorikawa K 2008 Opt. Lett. 33 2992
[13] Lanin A, Voronin A A, Stepanov E A, Fedotov A B and Zheltikov A M 2015 Opt. Lett. 40 974
[14] Liang H, Krogen P, Grynko R, Novak O, Chang C L, Stein G J, Weerawarne D, Shim B, Kärtner F X and Hong K H 2015 Opt. Lett. 40 1069
[15] Siwicki B, Klimczak M, Soboń G, Sotor J, Pysz D, Stępień R, Abramski K and Buczyńskia R 2015 Opt. Eng. 54 016102
[16] Dombi P, Rácz P, Veisz L and Baum P 2014 Opt. Lett. 39 2232
[17] Mcconnell G and Riis E 2004 Appl. Phys. B 78 557
[18] Heidt A M, Rothhardt J, Hartung A, Bartelt H, Rohwer E G, Limpert J and Tünnermann A 2011 Opt. Express 19 13873
[19] Ganz T, Pervak V, Apolonski A and Baum P 2011 Opt. Lett. 36 1107
[20] Schenkel B, Paschotta R and Keller U 2005 J. Opt. Soc. Am. B 22 687
[21] Agrawal G P 2007 Nonlinear Fiber Optics, 4th edn. (San Diego: Academic Press)
[22] Dudley J M and Taylor J R 2010 Supercontinuum Generation in Optical Fibers (UK: Cambridge University Press)
[1] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[2] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[3] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[4] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[5] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[6] Ultrafast structural dynamics using time-resolved x-ray diffraction driven by relativistic laser pulses
Chang-Qing Zhu(朱常青), Jun-Hao Tan(谭军豪), Yu-Hang He(何雨航), Jin-Guang Wang(王进光), Yi-Fei Li(李毅飞), Xin Lu(鲁欣), Ying-Jun Li(李英骏), Jie Chen(陈洁), Li-Ming Chen(陈黎明), and Jie Zhang(张杰). Chin. Phys. B, 2021, 30(9): 098701.
[7] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[8] Real-time frequency transfer system over ground-to-satellite link based on carrier-phase compensation at 10-16 level
Hui-Jian Liang(梁慧剑), Shi-Guang Wang(王时光), Yu Bai(白钰), Si-Chen Sun(孙思忱), and Li-Jun Wang(王力军). Chin. Phys. B, 2021, 30(8): 080601.
[9] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[10] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[11] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[12] Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect
Yongxia Zhang(张永霞), Jinhui Yuan(苑金辉), Yuwei Qu(屈玉玮), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), Xinzhu Sang(桑新柱), Keping Long(隆克平), Chongxiu Yu(余重秀). Chin. Phys. B, 2020, 29(3): 034208.
[13] Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber
Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094209.
[14] Design and optimization of microstructure optical fiber sensor based on bimetal plasmon mode interaction
Meng Wu(吴萌), Xin-Yu Liu(刘欣宇), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Bo-Yao Li(李波瑶), Zhi-Yun Hou(侯峙云). Chin. Phys. B, 2019, 28(12): 124202.
[15] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
No Suggested Reading articles found!