Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 025201    DOI: 10.1088/1674-1056/24/2/025201

Landau damping in a bounded magnetized plasma column

H. Zakeri-Khatir, F. M. Aghamir
Department of Physics, University of Tehran, Tehran 14399, Iran
Abstract  The damping decrement of Landau damping and the effect of thermal velocity on the frequency spectrum of a propagating wave in a bounded plasma column are investigated. The magnetized plasma column partially filling a cylindrical metallic tube is considered to be collisionless and non-degenerate. The Landau damping is due to the thermal motion of charge carriers and appears whenever the phase velocity of the plasma waves exceeds the thermal velocity of carriers. The analysis is based on a self-consistent kinetic theory and the solutions of the wave equation in a cylindrical plasma waveguide are presented using Vlasov and Maxwell equations. The hybrid mode dispersion equation for the cylindrical plasma waveguide is obtained through the application of appropriate boundary conditions to the plasma-vacuum interface. The dependence of Landau damping on plasma parameters and the effects of the metallic tube boundary on the dispersion characteristics of plasma and waveguide modes are investigated in detail through numerical calculations.
Keywords:  Landau damping      cylindrical plasma waveguide      Vlasov equation      dispersion characteristic  
Received:  06 June 2014      Revised:  01 September 2014      Accepted manuscript online: 
PACS:  52.25.Xz (Magnetized plasmas)  
  52.25.Dg (Plasma kinetic equations)  
  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
  52.25.Mq (Dielectric properties)  
Corresponding Authors:  F. M. Aghamir     E-mail:

Cite this article: 

H. Zakeri-Khatir, F. M. Aghamir Landau damping in a bounded magnetized plasma column 2015 Chin. Phys. B 24 025201

[1] Trivelpiece A W and Gould R W 1959 J. Appl. Phys. 30 1784
[2] Bevc V and Everhard T E 1962 J. Electron. Control 13 185
[3] Fisch N J 1987 Rev. Mod. Phys. 59 175
[4] Ghosh S K and Pal S P 1983 J. Plasma Phys. 29 383
[5] Ivanove S T, Alexov G and Malinov P N 1989 Plasma Phys. Control Fusion 31 941
[6] Maraghechi B, Willett J E, Mehdian H and Aktas Y 1994 Phys. Plasmas 1 3181
[7] Aghamir F M and Abbasnejad M 2007 Phys. Plasma 14 062110
[8] Uhm H S, Nguyen K T, Schneider R F and Smith J R 1988 J. Appl. Phys. 64 1108
[9] Hwang U, Willett J E and Mehdian H 1998 Phys. Plasmas 5 273.
[10] Willett J E, Aktas Y, Maraghechi B and Mehdian H 1994 Phys. Rev. E 49 4739
[11] Mehdian H, Willett J E, Maraghechi B and Aktas Y 1996 Phys. Plasmas 3 1130
[12] Landau L D 1946 Izv. Akad. Nauk SSSR Ser. Fiz. 10 25
[13] Hinton F L 1967 Phys. Fluids 10 2408
[14] Swift C T and Crownfield F R Jr 1971 IEEE Trans. Anten. Propag. 19 81
[15] Landau L D 1946 J. Phys. (Moscow) 10 45
[16] Malmberg J H and Wharton C B 1964 Phys. Rev. Lett. 13 184
[17] Malmberg J H and Wharton C B 1966 Phys. Rev. Lett. 17 175
[18] O'Neil T M 1965 Phys. Fluids 8 2255
[19] Wartski L, Coste P, Fusellier C, Schwebel C and Auburt J 2001 Rev. Sci Instrum. 72 3816
[20] Watanabe T, Yamamoto K, Koga Y and Tanaka A 2001 Jpn. J. Appl. Phys. 40 4684
[21] Stevens J E 1995 High Density Plasma Sources, ed. by Popov O A (New Jersey: Noyes Publications) p. 312
[22] Doughty C, Knick D C, Baily J B and Spencer J E 1999 J. Vac. Sci. Technol. A 17 2612
[23] Takahashi K, Kaneko T and Hatakeyama R 2006 Phys. Rev. E 74 016405
[24] Kaneko K, Takahashi K and Hatakeyama R 2007 Plasma Fusion Res. 2 038
[25] Ganguli A, Akhtar K and Tarey R D 2007 Phys. Plasmas 14 102107
[26] Ganguli A, Sahu B B and Tarey R D 2007 Phys. Plasmas 14 11
[27] Alexandrov A F, Bogdankevich L S and Rukhadze A A 1984 Principles of Plasma Electrocdynamics (Berlin: Springer-Verlag)
[1] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[2] Relaxation dynamics of Kuramoto model with heterogeneous coupling
Tianwen Pan(潘天文), Xia Huang(黄霞), Can Xu(徐灿), Huaping Lü(吕华平). Chin. Phys. B, 2019, 28(12): 120503.
[3] Analysis of Landau damping in radially inhomogeneous plasma column
H Rajabalinia-Jelodar, M K Salem, F M Aghamir, H Zakeri-Khatir. Chin. Phys. B, 2018, 27(5): 055203.
[4] Enhanced electron-positron pair production by frequency chirping in one- and two-color laser pulse fields
Nuriman Abdukerim, Zi-Liang Li(李子良), Bai-Song Xie(谢柏松). Chin. Phys. B, 2017, 26(2): 020301.
[5] Landau damping in a dipolar Bose-Fermi mixture in the Bose-Einstein condensation (BEC) limit
S M Moniri, H Yavari, E Darsheshdar. Chin. Phys. B, 2016, 25(12): 126701.
[6] Landau damping and frequency-shift of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate
Rahmut Arzigul (阿孜古丽·热合木提), Peng Sheng-Qiang (彭胜强), Ma Xiao-Dong (马晓栋). Chin. Phys. B, 2014, 23(9): 090311.
[7] Effect on Landau damping rates for non-Maxwellian distribution function consisting of two electron populations
M. N. S. Qureshi, S. Sehar, H. A. Shah, J. B. Cao. Chin. Phys. B, 2013, 22(3): 035201.
[8] Nonlinear Landau damping of high frequency waves in non-Maxwellian plasmas
M. N. S. Qureshi, Sumbul Sehar, J. K. Shi, H. A. Shah. Chin. Phys. B, 2013, 22(11): 115201.
[9] Enhanced electron–positron pair creation by the frequency chirped laser pulse
Jiang Min (姜敏), Xie Bai-Song (谢柏松), Sang Hai-Bo (桑海波), Li Zi-Liang (李子良). Chin. Phys. B, 2013, 22(10): 100307.
[10] An open-styled dielectric-lined azimuthally periodic circular waveguide for a millimeter wave traveling-wave tube
Liu Yang(刘漾), Wei Yan-Yu(魏彦玉), Xu Jin(徐进), Yin Hai-Rong(殷海荣), Yue Ling-Na(岳玲娜), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) . Chin. Phys. B, 2012, 21(4): 048403.
[11] Landau damping of collective mode in a quasi-two-dimensional repulsive Bose–Einstein condensate
Ma Xiao-Dong(马晓栋), Yang Zhan-Jin(杨占金), Lu Jun-Zhe(路俊哲), and Wei Wei(魏蔚). Chin. Phys. B, 2011, 20(7): 070307.
[12] Landau damping of longitudinal oscillation in ultra- relativistic plasmas with nonextensive distribution
Liu San-Qiu (刘三秋), Xiao-Chang (陈小昌). Chin. Phys. B, 2011, 20(6): 065201.
[13] Theoretical study of wave propagation along the coaxial waveguide filled with moving magnetized plasma
Zhang Ya-Xin(张雅鑫), Jia Jia(贾佳), Liu Sheng-Gang(刘盛纲), and Yan Yang(鄢扬). Chin. Phys. B, 2010, 19(10): 105202.
[14] Comparative research on three types of coaxial slow wave structures
Xiao Ren-Zhen(肖仁珍), Liu Guo-Zhi(刘国治), and Chen Chang-Hua(陈昌华). Chin. Phys. B, 2008, 17(10): 3807-3811.
[15] Theoretical analysis of a relativistic travelling wave tube filled with plasma
Xie Hong-Quan(谢鸿全) and Liu Pu-Kun(刘濮鲲). Chin. Phys. B, 2007, 16(3): 766-771.
No Suggested Reading articles found!