Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 035201    DOI: 10.1088/1674-1056/22/3/035201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effect on Landau damping rates for non-Maxwellian distribution function consisting of two electron populations

M. N. S. Qureshia b, S. Seharb, H. A. Shahb, J. B. Caoa
a Space Science Institute, Beihang University, Beijing 100191, China;
b Department of Physics, Government College University, Lahore 54000, Pakistan
Abstract  In many physical situations where a laser or electron beam passes through a dense plasma, hot low-density electron populations can be generated, resulting in a particle distribution function consisting of a dense cold population and a small hot population. Presence of such low-density electron distributions can alter the wave damping rate. Kinetic model is employed to study the Landau damping of Langmuir waves when a small hot electron population is present in the dense cold electron population with non-Maxwellian distribution functions. Departure of plasma from Maxwellian distributions significantly alters the damping rates as compared to the Maxwellian plasma. Strong damping is found for highly non-Maxwellian distributions as well as plasmas with higher dense and hot electron population. Existence of weak damping is also established when the distribution contains broadened flat tops at the low energies or tends to be Maxwellian. These results may be applied in both experimental and space physics regimes.
Keywords:  Landau damping      Langmuir waves      two electron populations      non-Maxwellian distribution function  
Received:  04 May 2012      Revised:  01 November 2012      Accepted manuscript online: 
PACS:  52.27.Cm (Multicomponent and negative-ion plasmas)  
  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  94.20.wj (Wave/particle interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 40931054), the National Basic Research Program of China (Grant No. 2011CB811404), and the Higher Education Commission of China (Grant No. 20-1886/R&D/10).
Corresponding Authors:  M. N. S. Qureshi     E-mail:  nouman_sarwar@yahoo.com

Cite this article: 

M. N. S. Qureshi, S. Sehar, H. A. Shah, J. B. Cao Effect on Landau damping rates for non-Maxwellian distribution function consisting of two electron populations 2013 Chin. Phys. B 22 035201

[1] Landau L D 1946 J. Phys. 10 25
[2] Thorne R M and Summers D 1991 Phys. Fluids B 3 2117
[3] Qureshi M N S, Shi J K and Ma S Z 2005 Phys. Plasmas 12 122902
[4] Gosling J T, Ashbridge J R, Bame S J, Feldman W C and Zwickl R D 1981 J. Geophys. Res. 86 547
[5] Lin R P, Levedahi W K, Lotko W, Gurnett D A and Scarf F L 1986 Astrophys. J. 308 954
[6] Vasyliunas V M 1990 J. Geophys. Res. 73 2839
[7] Fitzenreiter R J, Ogilivie K W, Chornay D J and Keller J 1998 Geophys. Res. Lett. 25 249
[8] Feldman W C, Bame S J, Gary S P, Gosling J T, McComas D, Thomsen M F, Paschmann G, Sckopke N, Hoppe M M and Russell C T 1982 Phys. Res. Lett. 49 199
[9] Feldman W C, Anderson R C, Bame S J, Gosling J T and Zwickl R D 1983 J. Geophys. Res. 88 9949
[10] Montgomery M D, Asbridge J R and Bame S J 1970 Geophys. Res. Lett. 75 1217
[11] Montgomery M D 1970 Particles and Fields in the Magnetosphere (Hingham: Mass) p. 95
[12] Summers D and Thorne R M 1991 Phys. Fluids B 3 1835
[13] Mace R L and Hellberg M A1995 Phys. Plasmas 2 2098
[14] Maksimovic M, Pierrard V and Riley P 1997 Geophys. Res. Lett. 24 1151
[15] Qureshi M N S, Pallocchia G, Bruno R, Cattaneo M B, Formisano V, Shah H A, Reme H, Bosued J M, Dandouras I, Sauvaud J A, Kistler L, Moebius E, Klecker B, Carlson CW, McFadden J P, Parks G K, McCarthy M, Korth A, Lundin R and Balogh A 2003 AIP Conference Proceedings Solar Wind p. 679
[16] Hasegawa A, Mima K and Duong-van M 1998 Phys. Rev. Lett. 25 4099
[17] Treumann R A 1999 Phys. Scr. 59 19
[18] Treumann R A 1999 Phys. Scr. 59 204
[19] Collier M R 1993 Geophys. Res. Lett. 20 1531
[20] Freund H P, Smith R A and Papadopoulos K 1981 Phys. Fluids 24 442
[21] Fourkal E, Bychenkov V Y, Rozmus W, Sydora R, Kirkby C, Capjack C E, Glenzer S H and Baldis H A 2001 Phys. Plasmas 8 550
[22] Tanaka M and Papadopoulos K1983 Phys. Fluids 26 1697
[23] Wang J G, Newman D L and Goldman M V 1997 J. Atmos. Sol. Terr. Phys. 59 2461
[24] Afeyan B B, Chou A E, Matte J P, Town R P J and Kruer W J 1998 Phys. Rev. Lett. 80 2322
[25] Yoon P H, Rhee T and Ryu C M 2005 Phys. Rev. Lett. 95 215003
[26] Lin R P 1980 Sol. Phys. 67 393
[27] Lin R P 1998 Space Sci. Rev. 86 61
[28] Pierrard V, Maksimovic M and Lemaire J 2001 Astrophys. Space Sci. 277 195
[29] Pagel C, Crooker N U, Larson D E, Kahler S W and Qwens M J 2005 J. Geophys. Res. 110 A01103
[30] Gaelzer R, Ziebell L F, Vinas A F, Yoon P H and Ryu C M 2008 Astrophys. J. 677 676
[31] Philipp W G, Miggenrieder H and Montgomery M D 1987 J. Geophys. Res. 92 1075
[32] Pierrard V, Maksimovic M and Lemaire J 2001 Astrophys. Space Sci. 277 195
[33] Nieves-Chinchilla T and Vinas A F 2008 J. Geophys. Res. 113 A02105
[34] Parks G K, Lee E, Lin N, Mozer F, Wilber M, Dandouras I, Reme H, Lucek E, Fazakerley A, Goldstein M, Gurgiolo C, Canu P, Cornilleau-Wehrlin N and Decreau P 2007 Phys. Rev. Lett. 98 265001
[35] Khan S A and Haque A 2008 Chin. Phys. Lett. 12 4329
[36] Hussain S, Akhtar A and Saeed-ur-Rehman 2011 Chin. Phys. Lett. 4 045202
[37] Mirza Arshad M, Mahmood S and Khan S A 2009 Chin. Phys. Lett. 4 045203
[38] Duan P, Yu D R, Qing S W, Ding Y J and Wang X G 2011 Acta Phys. Sin. 60 025204 (in Chinese)
[39] Duan P, Zhao X Y, Ni Z X and Liu J Y Acta Phys. Sin. 2011 60 045205 (in Chinese)
[40] Mace R L and Hellberg M A 2003 Phys. Plasmas 10 21
[41] Bers A, Shkarofsky I P and Shoucri M 2009 Phys. Plasmas 16 022104
[42] Xiao Z, Wang W Q and Hao Y Q 2004 Chin. Phys. Lett. 21 2461
[43] Ouazene M and Annou R 2011 Phys. Plasmas 18 114502
[44] Bonnell J, Kintner P, Wahlund J E and Holtet J A 1997 J. Geophys. Res. 102 17233
[45] Bale S D, Burgess D, Kellogg P J, Goetz K and Monson S J 1997 J. Geophys. Res. 102 11281
[46] Pulupa M P, Bale S D and Kasper J C 2010 J. Geophys. Res. 115 A04106
[47] Thejappa G and MacDowall R J 2000 Astrophys. J. 544 L163
[48] MacDowall R J, Lin N G and McComas D J 2003 Adv. Space Res. 32 479
[49] Qureshi M N S, Shah H A, Murtaza G, Scwartz S J and Mahmood F 2004 Phys. Plasmas 11 3819
[50] Rose D V, Guillory J and Beall J H 2005 Phys. Plasmas 12 014501
[51] Kiran Z, Shah H A, Qureshi M N S and Murtaza G 2006 Solar Phys. 236 167
[52] Mushtaq A and Shah H A 2006 Phys. Plasmas 13 012303
[53] Rose D V, Guillory J U and Beall J H 2002 Phys. Plasmas 9 1000
[54] Wickens L M, Allen J E and Rumsby P T 1978 Phys. Rev. Lett. 41 243
[55] Kegel W H 1970 Plasma Phys. 12 295
[56] Liu Z J, Xiang J, Zheng C Y, Zhu S P, Cao L H, He X T and Wang Y G 2010 Chin. Phys. B 19 075201
[1] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[2] Relaxation dynamics of Kuramoto model with heterogeneous coupling
Tianwen Pan(潘天文), Xia Huang(黄霞), Can Xu(徐灿), Huaping Lü(吕华平). Chin. Phys. B, 2019, 28(12): 120503.
[3] Analysis of Landau damping in radially inhomogeneous plasma column
H Rajabalinia-Jelodar, M K Salem, F M Aghamir, H Zakeri-Khatir. Chin. Phys. B, 2018, 27(5): 055203.
[4] Landau damping in a dipolar Bose-Fermi mixture in the Bose-Einstein condensation (BEC) limit
S M Moniri, H Yavari, E Darsheshdar. Chin. Phys. B, 2016, 25(12): 126701.
[5] Landau damping in a bounded magnetized plasma column
H. Zakeri-Khatir, F. M. Aghamir. Chin. Phys. B, 2015, 24(2): 025201.
[6] Landau damping and frequency-shift of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate
Rahmut Arzigul (阿孜古丽·热合木提), Peng Sheng-Qiang (彭胜强), Ma Xiao-Dong (马晓栋). Chin. Phys. B, 2014, 23(9): 090311.
[7] Parametric instabilities in single-walled carbon nanotubes
He Cai-Xia (何彩霞), Jian Yue (简粤), Qi Xiu-Ying (祁秀英), Xue Ju-Kui (薛具奎). Chin. Phys. B, 2014, 23(2): 025202.
[8] Parametric instabilities in quantum plasmas with electron exchange-correlation effects
He Cai-Xia (何彩霞), Xue Ju-Kui (薛具奎). Chin. Phys. B, 2013, 22(2): 025202.
[9] Nonlinear Landau damping of high frequency waves in non-Maxwellian plasmas
M. N. S. Qureshi, Sumbul Sehar, J. K. Shi, H. A. Shah. Chin. Phys. B, 2013, 22(11): 115201.
[10] Landau damping of collective mode in a quasi-two-dimensional repulsive Bose–Einstein condensate
Ma Xiao-Dong(马晓栋), Yang Zhan-Jin(杨占金), Lu Jun-Zhe(路俊哲), and Wei Wei(魏蔚). Chin. Phys. B, 2011, 20(7): 070307.
[11] Landau damping of longitudinal oscillation in ultra- relativistic plasmas with nonextensive distribution
Liu San-Qiu (刘三秋), Xiao-Chang (陈小昌). Chin. Phys. B, 2011, 20(6): 065201.
[12] Landau damping of collective modes in a harmonically trapped Bose--Einstein condensate
Ma Xiao-Dong(马晓栋), Zhou Yu(周昱), Ma Yong-Li(马永利), and Huang Guo-Xiang(黄国翔). Chin. Phys. B, 2006, 15(8): 1871-1878.
No Suggested Reading articles found!