Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 118106    DOI: 10.1088/1674-1056/24/11/118106
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dynamics of two polarized nanoparticles

Duan Xiao-Yong (段晓勇)a b, Wang Zhi-Guo (王治国)a
a School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
b School of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing 314001, China
Abstract  

The intrinsic dynamics of two interacting electric polarized nanorods is theoretically investigated. The relative motion between them caused by electric dipole-dipole interaction is derived based on the generalized Lagrangian formulation. The results show that the relative translation and rotation are nonlinear and closely dependent on the initial configuration of the two nanorods. Furthermore, the general conditions of the initial configuration, which determine the two nanorods to repel or attract each other at the initial time, are obtained. The two-dimensional relative motion of the two nanorods shows that the antiparallel and head-to-tail ordering stable self-assembly are respectively formed in two planar initial configurations. For different three-dimensional initial configurations, the interesting dynamic relative attraction, repulsion, and oscillation with rotation are respectively realized. Finally, the theoretical schemes which realize the relaxing, direct head-to-tail ordering, and direct antiparallel ordering stable self-assembly are presented according to the different modes of the motion of the nanoparticles. Some of our results agree well with the results of experiments and simulations.

Keywords:  dynamic self-assembly      polarized nanoparticle      intrinsic dynamics      dipole-dipole interaction  
Received:  09 April 2015      Revised:  05 July 2015      Accepted manuscript online: 
PACS:  81.16.Dn (Self-assembly)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  41.20.Cv (Electrostatics; Poisson and Laplace equations, boundary-value problems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11174222) and the National Basic Research Program of China (Grant No. 2011CB922203).

Corresponding Authors:  Wang Zhi-Guo     E-mail:  zgwang@tongji.edu.cn

Cite this article: 

Duan Xiao-Yong (段晓勇), Wang Zhi-Guo (王治国) Dynamics of two polarized nanoparticles 2015 Chin. Phys. B 24 118106

[1] Wang T, LaMontagne D, Lynch J, Zhuang J and Cao Y C;2013 Chem. Soc. Rev. 42 2804
[2] Wu Y C C, Xu X L, Liu Y X, Shao W J, Yin N Q, Zhang W T, Ke J X and Fang X T;2014 Chin. Phys. B 23 88703
[3] Furst E M;2013 Soft Matter 9 9039
[4] Grzelczak M, Vermant J, Furst E M and Liz-Marzán L M;2010 ACS Nano 4 3591
[5] Bishop K J, Wilmer C E, Soh S and Grzybowski B A;2009 Small 5 1600
[6] Talapin D V, Shevchenko E V, Murray C B, Titov A V and Král P;2007 Nano Lett. 7 1213
[7] Schmidle H, Hall C K, Velev O D and Klapp S H L;2012 Soft Matter 8 1521
[8] Zhang X, Zhang Z and Glotzer S C;2007 J. Phys. Chem. C 111 4132
[9] Cho K S, Talapin D V, Gaschler W and Murray C B;2005 J. Am. Chem. Soc. 127 7140
[10] Kuijk A, Troppenz T, Filion L, Imhof A, van Roij R, Dijkstra M and van Blaaderen A;2014 Soft Matter 10 6249
[11] Zhang K Q and Liu X Y;2009 J. Chem. Phys. 130 184901
[12] Hynninen A P and Dijkstra M;2005 Phys. Rev. Lett. 94 138303
[13] Hynninen A P and Dijkstra M 2005 Phys. Rev. E 72 051402
[14] Tang Z, Kotov N A and Giersig M 2002 Science 297 237
[15] Perminov S V, Drachev V P and Rautian S G;2007 Opt. Express 15 8639
[16] Klajn R, Bishop K J and Grzybowski B A;2007 Proc. Natl. Acad. Sci. USA 104 10305
[17] Klajn R, Bishop K J, Fialkowski M, Paszewski M, Campbell C J, Gray T P and Grzybowski B A;2007 Science 316 261
[18] Fougt H M and Morup S;1998 J. Magn. Magn. Mater. 184 262
[19] Alvarez C E and Klapp S H L;2012 Soft Matter 8 7480
[20] Chen J, Dong A, Cai J, Ye X, Kang Y, Kikkawa J M and Murray C B;2010 Nano Lett. 10 5103
[21] Hucht A, Buschmann S and Entel P;2007 Europhys Lett. 77 57003
[22] Padgett M and Bowman R;2011 Nat. Photon. 5 343
[23] Lehmuskero A, Li Y, Johansson P and Kall M;2014 Opt. Express 22 4349
[24] Canaguier-Durand A and Genet C;2014 Phys. Rev. A 89 033841
[25] Lehmuskero A, Ogier R, Gschneidtner T, Johansson P and Kall M;2013 Nano Lett. 13 3129
[26] Heinrich D, Goñi A R, Smessaert A, Klapp S H L, Cerioni L M C, Osán T M, Pusiol D J and Thomsen C;2011 Phys. Rev. Lett. 106 208301
[27] Allen P B 2004 J. Chem. Phys. 120 295
[28] Goldstein H, Poole C and Safko J 2002 Classical Mechanics (3rd edn.) (New York: Addison-Wesley) p. 44
[29] Jha P K, Kuzovkov V, Grzybowski B A and de la Cruz M O;2012 Soft Matter 8 227
[30] Mann S;2009 Nat. Mater. 8 781

[1] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[2] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[3] Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap
Qing-Bo Wang(王庆波), Hui Yang(杨慧), Ning Su(苏宁), and Ling-Hua Wen(文灵华). Chin. Phys. B, 2020, 29(11): 116701.
[4] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[5] Levitation and lateral forces between a point magnetic dipole and a superconducting sphere
H M Al-Khateeb, M K Alqadi, F Y Alzoubi, B Albiss, M K Hasan (Qaseer), N Y Ayoub. Chin. Phys. B, 2016, 25(5): 058402.
[6] Landau damping in a dipolar Bose-Fermi mixture in the Bose-Einstein condensation (BEC) limit
S M Moniri, H Yavari, E Darsheshdar. Chin. Phys. B, 2016, 25(12): 126701.
[7] Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity
Ya-Mei Zheng(郑雅梅), Chang-Sheng Hu(胡长生), Zhen-Biao Yang(杨贞标), Huai-Zhi Wu(吴怀志). Chin. Phys. B, 2016, 25(10): 104202.
[8] Position-dependent property of resonant dipole—dipole interaction mediated by localized surface plasmon of an Ag nanosphere
Xu Dan (许丹), Wang Xiao-Yun (王小云), Huang Yong-Gang (黄勇刚), Ouyang Shi-Liang (欧阳仕粮), He Hai-Long (何海龙), He Hao (何浩). Chin. Phys. B, 2015, 24(2): 024205.
[9] Measurement-induced disturbance between two atoms in Tavis–Cummings model with dipole–dipole interaction
Zhang Guo-Feng (张国锋), Wang Xiao (王骁), Lü Guang-Hong (吕广宏). Chin. Phys. B, 2014, 23(10): 104204.
[10] Sum and two-atom dipole squeezing in a system of a two-mode vacuum field interacting with two coupled atoms
Hou Bang-Pin (侯邦品), Liu Jie (刘杰), Hu Ping (胡萍). Chin. Phys. B, 2002, 11(1): 30-34.
No Suggested Reading articles found!