Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 123601    DOI: 10.1088/1674-1056/25/12/123601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Large adsorption energies for CO on Scn (n=2-8, 13) nanoclusters

Jiang Meng(孟江)
College of Information Engineering, Xizang Minzu University, Xianyang 712082, China
Abstract  

In order to seek a transition metal cluster with high ability to adsorb CO molecule, the author performs a density function theory calculation on COScn (n=2-8, 13) clusters. The results demonstrate that COScn (n=2-8, 13) clusters have the large adsorption energies of which the values are over 3.6 eV, and the elongations of C-O bond length exceed 20% in most calculated sizes. Adsorbing CO contributes to the improvement of the chemical activity, but reduces the magnetic moment of corresponding Scn cluster.

Keywords:  Scn clusters      CO adsorption      structures      electronic properties  
Received:  29 July 2016      Revised:  04 September 2016      Accepted manuscript online: 
PACS:  36.40.Cg (Electronic and magnetic properties of clusters)  
  31.15.ae (Electronic structure and bonding characteristics)  
  31.15.E-  
Fund: 

Project supported by the Natural Science Foundation of Tibet Autonomous Region, China (Grant No. 2016-ZR-15-23), the Fund from the Key Laboratory of Optical Information Processing and Visualization Technology, Tibet Autonomous Region, China, the Young Talent Cultivation Plan of Xizang (Tibet) Minzu University, China (Grant No. 14myQP05), and the Important Cultivate Plan of Xizang Minzu University (Grant No. 12myZP02).

Corresponding Authors:  Jiang Meng     E-mail:  jmeng21@126.com

Cite this article: 

Jiang Meng(孟江) Large adsorption energies for CO on Scn (n=2-8, 13) nanoclusters 2016 Chin. Phys. B 25 123601

[1] Wang Y and Gong X G 2006 J. Chem. Phys. 125 124703
[2] Reboredo F A and Galli G 2006 J. Phys. Chem. B 110 7979
[3] Padilla-Campos L 2008 Theochem 851 15
[4] He K, Pan M H, Wang J Z, Liu H, Jia J F and Xue Q K 2006 Surf. Interface Anal. 38 1028
[5] Mi H, Pan X Y and Wei S H 2015 Chin. Phys. B 24 098201
[6] Knickelbein M B 2005 Phys. Rev. B 71 184442
[7] Yuan H K, Chen H, Ahmed A S and Zhang J F 2006 Phys. Rev. B 74 144434
[8] Wang J L 2007 Phys. Rev. B 75 155422
[9] Tian F Y, Jing Q and Wang Y X 2008 Phys. Rev. A 77 013202
[10] Yao J G, Tian Z Y and Wang Y X 2011 Mol. Phys. 109 1957
[11] Yao J, Xu B and Wang Y X 2012 Chin. J. Chem. 30 905
[12] Tian F Y, Shen J and Wang Y X 2010 J. Phys. Chem. A 114 1616
[13] Kuang X J, Wang X Q and Liu G B 2010 Catal Lett. 137 247
[14] Ge G X, Yang Z Q and Cao H B 2009 Acta Phys. Sin. 58 6128 (in Chinese)
[15] Ge G X, Tang G H, Jing Q and Luo Y H 2009 Acta Phys. Chem. Sin. 25 1195
[16] Zhao W, Li X, Shao X, Xu B and Yao J 2013 Eur. Phys. J. D 67 186
[17] Yao J G, Gong B A and Wang Y X 2013 Acta Phys. Sin. 62 243601 (in Chinese)
[18] DMOL is a density functional theory program distributed by Accelrys, Inc. Delley B, 1990 J. Chem. Phys. 92 508, 2000 113 7756
[19] Delley B 2002 Phys. Rev. B 66 155125
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Knight L B, Van Zee R J and Weltner W 1983 Chem. Phys. Lett. 94 296
[22] Moskovits M, Dilella D P and LimmW 1984 J. Chem. Phys. 80 626
[23] Lide D R 1995 CRC Handbook of Chemistry and Physics, 73rd edn. (CRC Press:Boca Raton, FL) pp. 9-15
[1] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[2] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Evolution of surfaces and mechanisms of contact electrification between metals and polymers
Lin-Feng Wang(王林锋), Yi Dong(董义), Min-Hao Hu(胡旻昊), Jing Tao(陶静), Jin Li(李进), and Zhen-Dong Dai(戴振东). Chin. Phys. B, 2022, 31(6): 066202.
[5] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[6] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[7] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[8] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[9] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[10] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[11] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[14] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[15] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
No Suggested Reading articles found!