Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 123104    DOI: 10.1088/1674-1056/25/12/123104
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

State-to-state quantum dynamics of N(2D)+HD (v=0, j=0) reaction

Yong Zhang(张勇)
Department of Physics, Tonghua Normal University, Tonghua 134002, China
Abstract  

The N(2D)+HD (v=0, j=0) reaction has been studied by a quantum time-dependent wave packet approach with a second-order split operator on the potential energy surface of Li et al. (Li Y, Yuan J, Chen M, Ma F and Sun M J. Comput. Chem. 34 1686). The rovibrationally resolved reaction probability, vibrationally integral cross section, and differential cross section of the NH+D and ND+H channel are investigated at the state-to-state level of theory. The experimental data of the thermal rate constant of two output channels is very scare, but the sum of the two output channels is in excellent agreement with the experimental data which was reported by Umemoto et al. It may imply that the thermal rate constants of the two output channels are accurate and reliable.

Keywords:  N(2D)+HD      time-dependent wave packet      differential cross section      thermal rate constant  
Received:  27 June 2016      Revised:  04 September 2016      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  34.50.-s (Scattering of atoms and molecules)  
  03.67.Lx (Quantum computation architectures and implementations)  
Corresponding Authors:  Yong Zhang     E-mail:  victor0536@163.com

Cite this article: 

Yong Zhang(张勇) State-to-state quantum dynamics of N(2D)+HD (v=0, j=0) reaction 2016 Chin. Phys. B 25 123104

[1] Dodd J A, Lipson S J, Flanagan D J, Blumberg W A M, Person J C and Green B D 1991 J. Chem. Phys. 94 4301
[2] Suzuki T, Shihira Y, Umemoto H and Tsunashima S 1993 J. Chem. Soc. Faraday Trans. 89 995
[3] Umemoto H and Matsumoto K 1996 J. Chem. Phys. 104 9640
[4] Umemoto H, Asai T and Kimura Y 1997 J. Chem. Phys. 106 4985
[5] Umemoto H 1998 Chem. Phys. Lett. 292 594
[6] Umemoto H, Hachiya N, Matsunaga E, Suda A and Kawasaki M 1998 Chem. Phys. Lett. 296 203
[7] Alagia M, Balucani N, Cartechini L, Cachavecchia P, Volpi G G, Pederson L A, Scatz G C, Lendavy G, Harding L B, Hollenbeek T, Ho T S and Rabitz H 1999 J. Chem. Phys. 110 8857
[8] Umemoto H, Terada N and Tanaka K 2000 J. Chem. Phys. 112 5762
[9] Balucani N, Alagia M, Cartechini L, Casavecchia P, Volpi G G, Pederson L A and Schatz G C 2001 J. Phys. Chem. A 105 2414
[10] Liu K 2001 Int. Rev. Phys. Chem. 20 189
[11] Kobayashi H, Takayanagi T, Yokoyama K, Sato T and Tsunashima S 1995 J. Chem. Soc., Faraday Trans. 91 3771
[12] Takayanagi T, Kobayashi H and Tsunashima S 1996 J. Chem. Soc., Faraday Trans. 92 1311
[13] Kobayashi H, Takayanagi T nad Tsunashima S 1997 Chem. Phys. Lett. 277 20
[14] Pederson L A, Schatz G C, Ho T S, Hollebeek T, Rabitz H, Harding L B and Lendvay G 1999 J. Chem. Phys. 110 9091
[15] Honvault P and Launay J M 1999 J. Chem. Phys. 111 6665
[16] Hollebeek T, Ho T S, Rabitz H and Harding L B 2001 J. Chem. Phys. 114 3945
[17] Larrégaray P, Bonnet L and Rayez J C 2001 J. Chem. Phys. 114 9380
[18] Rackham E J, Huarte-Larranaga F and Manolopoulos D E 2001 Chem. Phys. Lett. 343 356
[19] Larrégaray P, Bonnet L and Rayez J C 2002 Phys. Chem. Chem. Phys. 4 1571
[20] Balucani N, Cartechini L, Capozza G, Segoloni E, Casavecchia P, Volpi G G, Aoiz F J, Bañares L, Honvault P and Launay J M 2002 Phys. Rev. Lett. 89 013201
[21] Santoro F, Petrongolo C and Schatz G C 2002 J. Phys. Chem. A 106 8276
[22] Defazio P and Petyongolo C 2003 J. Theor. Comput. Chem. 2 547
[23] Ho T S, Rabitz H, Aoiz F J, Bañares L, Vázquez S A and Harding L B 2003 J. Chem. Phys. 119 3063
[24] Bañares L, Aoiz F J, González-Lezana T, Herrero V J and Tanarro I 2005 J. Chem. Phys. 123 224301
[25] Varandas A J C and Poveda L A 2006 Theor. Chem. Acc. 116 404
[26] Aoiz F J, Bañares L and Herrero V J 2006 J. Phys. Chem. A 110 12546
[27] Varandas A J C, Chu T S, Han K L and Caridade P J S B 2006 Chem. Phys. Lett. 421 415
[28] Gogtas F and Bulut N 2006 Int. J. Quantum Chem. 106 833
[29] Balucani N, Casavecchia P, Bañares L, Aoiz F J, Gonzalez-Lezana T, Honvault P and Launay J-M 2006 J. Phys. Chem. A 110 817
[30] Chu T S, Han K L and Varandas A J C 2006 J. Phys. Chem. A 110 1666
[31] Lin S Y and Guo H 2006 J. Chem. Phys.124 031101
[32] Defazio P and Petrongolo C 2006 J. Chem. Phys. 125 064308
[33] Castillo J F, Bulut N, Bañares L and Gogtas F 2007 Chem. Phys. 332 119
[34] Lin S Y, Bañares L and Guo H 2007 J. Phys. Chem. A 111 2376
[35] Rao B J and Mahapatra S 2007 J. Chem. Phys. 127 244307
[36] Defazio P and Petrongolo C 2007 J. Chem. Phys. 127 204311
[37] Chu T S, Duan Y B, Yuan S P and Varandas A J C 2007 Chem. Phys. Lett. 444 351
[38] Zhou S, Xie D, Lin S Y and Guo H 2008 J. Chem. Phys. 128 224316
[39] Gamallo P, Defazio P, González M and Petrongolo C 2008 J. Chem. Phys. 129 244307
[40] Aoiz F J, González-Lezana T and Rábanos V S 2008 J. Chem. Phys. 129 094305
[41] Zhou S, Li Z, Xie D, Lin S Y and Guo H 2009 J. Chem. Phys. 130 184307
[42] Gamallo P and Defazio P 2009 J. Chem. Phys. 131 044320
[43] Lin S Y, Guo H, Jiang B, Zhou S L and Xie D Q 2010 J. Phys. Chem. A 114 9655
[44] Li Z, Xie C J, Jiang B, Xie D Q, Liu L, Sun Z G, Zhang D H and Guo H 2011 J. Chem. Phys. 134 134303
[45] Hankel M and Yue X F 2012 Comput. Theor. Chem. 990 23
[46] Li Y, Yuan J, Chen M, Ma F and Sun M 2013 J. Comput. Chem. 34 1686
[47] Li Y Q, Ma F C and Sun M T 2013 J. Chem. Phys. 139 154305
[48] Yang C L, Wang L Z, Wang M S and Ma X G 2013 J. Phys. Chem. A 117 3
[49] Karabulut E, Aslan E, Klos J and Bulut N 2014 Chem. Phys. 441 53
[50] Du Z X, Yang C L, Wang M S, Ma X G and Wang L Z 2014 Comput. Theor. Chem. 1046 25
[51] Li Y Q, Yang F Y, Yu Y, Zhang Y J and Ma F C 2016 Chin. Phys. B 25 023401
[52] Karabulut E, Aslan E and Bulut N 2014 Commun. Comput. Chem. 2 36
[53] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[57] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[58] Li Y Q, Zhang Y J, Zhao J F, Zhao M Y and Ding Y 2015 Chin. Phys. B 24 113402
[59] Zhang J, Gao S B, Wu H and Meng Q T 2015 Chin. Phys. B 24 083104
[54] Lin S Y and Guo H 2006 Phys. Rev. A 74 022703
[55] Mowrey R C 1991 J. Chem. Phys. 94 7098
[56] Sun Z, Guo H and Zhang D H 2010 J. Chem. Phys. 132 084112
[1] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[2] State-to-state dynamics of reactions H+DH'(v = 0,j = 0) → HH'(v',j')+D/HD(v',j')+H' with time-dependent quantum wave packet method
Juan Zhao(赵娟), Da-Guang Yue(岳大光), Lu-Lu Zhang(张路路), Shang Gao(高尚), Zhong-Bo Liu(刘中波), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(7): 073102.
[3] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[4] Double differential cross sections for ionization of H by 75 keV proton impact: Assessing the role of correlated wave functions
Jungang Fan(范军刚), Xiangyang Miao(苗向阳), and Xiangfu Jia(贾祥福). Chin. Phys. B, 2020, 29(12): 120301.
[5] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[6] Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics
Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(2): 023102.
[7] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[8] Polarization and exchange effects in elastic scattering of electron with atoms and ions
Zhang-Jin Chen(陈长进), Dan-Dan Cui(崔丹丹). Chin. Phys. B, 2018, 27(5): 053403.
[9] State-to-state dynamics of F(2P)+HO(2Π) →O(3P)+HF(1+) reaction on 13A" potential energy surface
Juan Zhao(赵娟), Hui Wu(吴慧), Hai-Bo Sun(孙海波), Li-Fei Wang(王立飞). Chin. Phys. B, 2018, 27(2): 023102.
[10] The effect of field modulation on the vibrational population of the photoassociated NaK and its dynamics
Yu Wang(王玉), Da-Guang Yue(岳大光), Xu-Cong Zhou(周旭聪), Ya-Hui Guo(郭雅慧), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2017, 26(4): 043202.
[11] Differential cross sections of positron—hydrogen collisions
Rong-Mei Yu(于荣梅), Chun-Ying Pu(濮春英), Xiao-Yu Huang(黄晓玉), Fu-Rong Yin(殷复荣), Xu-Yan Liu(刘旭焱), Li-Guang Jiao(焦利光), Ya-Jun Zhou(周雅君). Chin. Phys. B, 2016, 25(7): 073401.
[12] Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction
Yong-Qing Li(李永庆), Yun-Fan Yang(杨云帆), Yang Yu(于洋), Yong-jia Zhang(张永嘉), Feng-Cai Ma(马凤才). Chin. Phys. B, 2016, 25(2): 023401.
[13] Triple differential cross sections of magnesium in doubly symmetric geometry
S Y Sun(孙世艳), X Y Miao(苗向阳), Xiang-Fu Jia(贾祥富). Chin. Phys. B, 2016, 25(1): 013401.
[14] State-to-state quantum dynamics of the N(4S)+H2 (X1Σ+)→NH(X3-)+H(2S) reaction and its reaction mechanism analysis
Zhang Jing (张静), Gao Shou-Bao (高守宝), Wu Hui (吴慧), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2015, 24(8): 083104.
[15] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(4): 043402.
No Suggested Reading articles found!