Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 117502    DOI: 10.1088/1674-1056/25/11/117502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Size-dependent exchange bias in single phase Mn3O4 nanoparticles

Song-Wei Wang(王松伟)1,2, Xin Zhang(张鑫)1,2, Rong Yao(姚蓉)1,2, Guang-Hui Rao(饶光辉)1,2
1 School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China;
2 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  

Glassy magnetic behavior and exchange bias phenomena are observed in single phase Mn3O4 nanoparticles. Dynamics scaling analysis of the ac susceptibility and the Henkel plot indicate that the observed glassy behavior at low temperature can be understood by taking into account the intrinsic behavior of the individual particles consisting of a ferrimagnetic (FIM) core and a spin-glass surface layer. Field-cooled magnetization hysteresis loops display both horizontal and vertical shifts. Dependence of the exchange bias field (HE) on the cooling field shows an almost undamped feature up to 70 kOe, indicating the stable exchange bias state in Mn3O4.HE increases as the particle size decreases due to the higher surface/volume ratio. The occurrence of the exchange bias can be attributed to the pinning effect of the frozen spin-glass surface layer upon the FIM core.

Keywords:  exchange bias      surface disorder      nanoparticles  
Received:  03 July 2016      Revised:  26 July 2016      Accepted manuscript online: 
PACS:  75.47.Lx (Magnetic oxides)  
  75.50.Lk (Spin glasses and other random magnets)  
  75.50.Gg (Ferrimagnetics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11464007), the Natural Science Foundation of Guangxi, China (Grant Nos. 2012GXNSFGA060002 and 2014GXNSFBA118241), the Guangxi Key Laboratory of Information Material Foundation, China (Grant No. 131021-Z), and the Guangxi Department of Education Foundation, China (Grant Nos. YB2014120 and KY2015YB104).

Corresponding Authors:  Xin Zhang, Guang-Hui Rao     E-mail:  xzhang80@163.com;rgh@guet.edu.cn

Cite this article: 

Song-Wei Wang(王松伟), Xin Zhang(张鑫), Rong Yao(姚蓉), Guang-Hui Rao(饶光辉) Size-dependent exchange bias in single phase Mn3O4 nanoparticles 2016 Chin. Phys. B 25 117502

[1] Lu A H, Salabas E L and Schuth F 2007 Angew. Chem. Int. Ed. 46 1222
[2] Meiklejohn W P and Bean C P 1956 Phys. Rev. 102 1413
[3] Qi X J, Wang Y G, Miao X F, Li Z Q and Huang Y Z 2010 Chin. Phys. B 19 037505
[4] Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D and Nogués J 2003 Nature 423 850
[5] Jiang Y, Nozaki T, Abe S, Ochiai T, Hirohata A, Tezuka N and Inomata K 2004 Nat. Mater. 3 361
[6] Berkowitz A E, Rodriguez G F, Hong J I, An K, Hyeon T, Agarwal N, Smith D J and Fullerton E E 2008 Phys. Rev. B 77 024403
[7] Si P Z, Li D, Lee J W, Choi C J, Zhang Z D, Geng D Y and Brück E 2005 Appl. Phys. Lett. 87 133122
[8] Golosovsky V, Salazar-Alvarez G, Lòpez-Ortega A, González M A, Sort V, Estrader M, Suri nach S, Barò M D and Nogués J 2009 Phys. Rev. Lett. 102 247201
[9] Si P Z, Li D, Lee J W, Choi C J, Zhang Z D, Geng D Y and Brück E 2005 Appl. Phys. Lett. 87 133122
[10] Fang D F, Ding X, Dai R C, Zhao Z, Wang Z P and Zhang Z M 2014 Chin. Phys. B 23 127804
[11] Kodama R H, Berkowitz A E, McNiff E J and Foner S 1996 Phys. Rev. Lett. 77 394
[12] Martinez B, Obradors X, Balcells L, Rouanet A and Monty C 1998 Phys. Rev. Lett. 80 181
[13] Manna P K, Yusuf S M, Shukla R and Tyagi A K 2010 Appl. Phys. Lett. 96 242508
[14] Karmakar S, Taran S, Bose E and Chaudhuri B K 2008 Phys. Rev. B 77 144409
[15] Duan H N, Yuan S L, Zheng X F and Tian Z M 2012 Chin. Phys. B 21 078101
[16] Zheng R K, Wen G H, Fung K K and Zhang X X 2004 Phys. Rev. B 69 214431
[17] Stoner E C and Wohlfarth E P 1948 Philos. Trans. R. Soc. London, Ser. A 240 599
[18] Duan L B, Chu W G, Yu J, Wang Y C, Zhang L N, Liu G Y, Liang J K and Rao G H 2008 J. Magn. Magn. Mater. 320 1573
[19] Chen B, Rao G H, Wang S W, Lan Y A, Pan L J and Zhang X 2015 Mater. Lett. 154 160
[20] Tackett R and Lawes G 2007 Phys. Rev. B 76 024409
[21] Mao J H, Sui Y, Wang X J, Yang Y Y, Zhang X Q, Wang Y, Wang Y and Liu W F 2011 J. Alloys Compd. 509 4950
[22] Chamberlin R V, Mozurkewich G and Orbach R 1984 Phys. Rev. Lett. 52 867
[23] Hoogerbeets R, Luo W L and Orbach R 1986 Phys. Rev. B 34 1719
[24] Halperin B I and Hohenberg P C 1977 Rev. Mod. Phys. 49 435
[25] Nam D N H, Mathieu R, Nordblad P, Khiem N V and Phuc N X 2000 Phys. Rev. B 62 8989
[26] Wohlfarth E P 1958 J. Appl. Phys. 29 595
[27] Torre E D 1999 Magnetic Hysteresis (New York:IEEE Press) p. 100
[28] Hilo M E, O'Grady K and Chantrell R W 1991 IEEE Trans. Magn. 27 4666
[29] Du J, Zhang B, Zheng R K and Zhang X X 2007 Phys. Rev. B 75 014415
[30] Rui W B, He M C, You B, Shi Z, Zhou S M, Xiao M W, Gao Y, Zhang W, Sun L and Du J 2014 Chin. Phys. B 23 107502
[31] Binek C 2004 Phys. Rev. B 70 014421
[32] Ghara S, Jeon B G, Yoo K, Kim K H and Sundaresan1 A 2014 Phys. Rev. B 90 024413
[33] Niebieskikwiat D and Salamon M B 2005 Phys. Rev. B 72 174422
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[3] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[4] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[7] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[8] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[9] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[10] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[11] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[12] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[13] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[14] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[15] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
No Suggested Reading articles found!