CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Size-dependent exchange bias in single phase Mn3O4 nanoparticles |
Song-Wei Wang(王松伟)1,2, Xin Zhang(张鑫)1,2, Rong Yao(姚蓉)1,2, Guang-Hui Rao(饶光辉)1,2 |
1 School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China;
2 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China |
|
|
Abstract Glassy magnetic behavior and exchange bias phenomena are observed in single phase Mn3O4 nanoparticles. Dynamics scaling analysis of the ac susceptibility and the Henkel plot indicate that the observed glassy behavior at low temperature can be understood by taking into account the intrinsic behavior of the individual particles consisting of a ferrimagnetic (FIM) core and a spin-glass surface layer. Field-cooled magnetization hysteresis loops display both horizontal and vertical shifts. Dependence of the exchange bias field (HE) on the cooling field shows an almost undamped feature up to 70 kOe, indicating the stable exchange bias state in Mn3O4.HE increases as the particle size decreases due to the higher surface/volume ratio. The occurrence of the exchange bias can be attributed to the pinning effect of the frozen spin-glass surface layer upon the FIM core.
|
Received: 03 July 2016
Revised: 26 July 2016
Accepted manuscript online:
|
PACS:
|
75.47.Lx
|
(Magnetic oxides)
|
|
75.50.Lk
|
(Spin glasses and other random magnets)
|
|
75.50.Gg
|
(Ferrimagnetics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11464007), the Natural Science Foundation of Guangxi, China (Grant Nos. 2012GXNSFGA060002 and 2014GXNSFBA118241), the Guangxi Key Laboratory of Information Material Foundation, China (Grant No. 131021-Z), and the Guangxi Department of Education Foundation, China (Grant Nos. YB2014120 and KY2015YB104). |
Corresponding Authors:
Xin Zhang, Guang-Hui Rao
E-mail: xzhang80@163.com;rgh@guet.edu.cn
|
Cite this article:
Song-Wei Wang(王松伟), Xin Zhang(张鑫), Rong Yao(姚蓉), Guang-Hui Rao(饶光辉) Size-dependent exchange bias in single phase Mn3O4 nanoparticles 2016 Chin. Phys. B 25 117502
|
[1] |
Lu A H, Salabas E L and Schuth F 2007 Angew. Chem. Int. Ed. 46 1222
|
[2] |
Meiklejohn W P and Bean C P 1956 Phys. Rev. 102 1413
|
[3] |
Qi X J, Wang Y G, Miao X F, Li Z Q and Huang Y Z 2010 Chin. Phys. B 19 037505
|
[4] |
Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D and Nogués J 2003 Nature 423 850
|
[5] |
Jiang Y, Nozaki T, Abe S, Ochiai T, Hirohata A, Tezuka N and Inomata K 2004 Nat. Mater. 3 361
|
[6] |
Berkowitz A E, Rodriguez G F, Hong J I, An K, Hyeon T, Agarwal N, Smith D J and Fullerton E E 2008 Phys. Rev. B 77 024403
|
[7] |
Si P Z, Li D, Lee J W, Choi C J, Zhang Z D, Geng D Y and Brück E 2005 Appl. Phys. Lett. 87 133122
|
[8] |
Golosovsky V, Salazar-Alvarez G, Lòpez-Ortega A, González M A, Sort V, Estrader M, Suri nach S, Barò M D and Nogués J 2009 Phys. Rev. Lett. 102 247201
|
[9] |
Si P Z, Li D, Lee J W, Choi C J, Zhang Z D, Geng D Y and Brück E 2005 Appl. Phys. Lett. 87 133122
|
[10] |
Fang D F, Ding X, Dai R C, Zhao Z, Wang Z P and Zhang Z M 2014 Chin. Phys. B 23 127804
|
[11] |
Kodama R H, Berkowitz A E, McNiff E J and Foner S 1996 Phys. Rev. Lett. 77 394
|
[12] |
Martinez B, Obradors X, Balcells L, Rouanet A and Monty C 1998 Phys. Rev. Lett. 80 181
|
[13] |
Manna P K, Yusuf S M, Shukla R and Tyagi A K 2010 Appl. Phys. Lett. 96 242508
|
[14] |
Karmakar S, Taran S, Bose E and Chaudhuri B K 2008 Phys. Rev. B 77 144409
|
[15] |
Duan H N, Yuan S L, Zheng X F and Tian Z M 2012 Chin. Phys. B 21 078101
|
[16] |
Zheng R K, Wen G H, Fung K K and Zhang X X 2004 Phys. Rev. B 69 214431
|
[17] |
Stoner E C and Wohlfarth E P 1948 Philos. Trans. R. Soc. London, Ser. A 240 599
|
[18] |
Duan L B, Chu W G, Yu J, Wang Y C, Zhang L N, Liu G Y, Liang J K and Rao G H 2008 J. Magn. Magn. Mater. 320 1573
|
[19] |
Chen B, Rao G H, Wang S W, Lan Y A, Pan L J and Zhang X 2015 Mater. Lett. 154 160
|
[20] |
Tackett R and Lawes G 2007 Phys. Rev. B 76 024409
|
[21] |
Mao J H, Sui Y, Wang X J, Yang Y Y, Zhang X Q, Wang Y, Wang Y and Liu W F 2011 J. Alloys Compd. 509 4950
|
[22] |
Chamberlin R V, Mozurkewich G and Orbach R 1984 Phys. Rev. Lett. 52 867
|
[23] |
Hoogerbeets R, Luo W L and Orbach R 1986 Phys. Rev. B 34 1719
|
[24] |
Halperin B I and Hohenberg P C 1977 Rev. Mod. Phys. 49 435
|
[25] |
Nam D N H, Mathieu R, Nordblad P, Khiem N V and Phuc N X 2000 Phys. Rev. B 62 8989
|
[26] |
Wohlfarth E P 1958 J. Appl. Phys. 29 595
|
[27] |
Torre E D 1999 Magnetic Hysteresis (New York:IEEE Press) p. 100
|
[28] |
Hilo M E, O'Grady K and Chantrell R W 1991 IEEE Trans. Magn. 27 4666
|
[29] |
Du J, Zhang B, Zheng R K and Zhang X X 2007 Phys. Rev. B 75 014415
|
[30] |
Rui W B, He M C, You B, Shi Z, Zhou S M, Xiao M W, Gao Y, Zhang W, Sun L and Du J 2014 Chin. Phys. B 23 107502
|
[31] |
Binek C 2004 Phys. Rev. B 70 014421
|
[32] |
Ghara S, Jeon B G, Yoo K, Kim K H and Sundaresan1 A 2014 Phys. Rev. B 90 024413
|
[33] |
Niebieskikwiat D and Salamon M B 2005 Phys. Rev. B 72 174422
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|