Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 114701    DOI: 10.1088/1674-1056/25/11/114701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Induced magnetic field stagnation point flow of nanofluid past convectively heated stretching sheet with Buoyancy effects

Tanzila Hayat, S Nadeem
Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
Abstract  This paper presents the buoyancy effects on the magneto-hydrodynamics stagnation point flow of an incompressible, viscous, and electrically conducting nanofluid over a vertically stretching sheet. The impacts of an induced magnetic field and viscous dissipation are taken into account. Both assisting and opposing flows are considered. The overseeing nonlinear partial differential equations with the associated boundary conditions are reduced to an arrangement of coupled nonlinear ordinary differential equations utilizing similarity transformations and are then illuminated analytically by using the optimal homotopy investigation strategy (OHAM). Graphs are introduced and examined for different parameters of the velocity, temperature, and concentration profile. Additionally, numerical estimations of the skin friction, local Nusselt number, and local Sherwood number are explored using numerical values.
Keywords:  stretching sheet      nanofluid      boundary layer flow heat transfer  
Received:  25 March 2016      Revised:  19 May 2016      Accepted manuscript online: 
PACS:  44.20.+b (Boundary layer heat flow)  
  44.05.+e (Analytical and numerical techniques)  
  47.15.-x (Laminar flows)  

Cite this article: 

Tanzila Hayat, S Nadeem Induced magnetic field stagnation point flow of nanofluid past convectively heated stretching sheet with Buoyancy effects 2016 Chin. Phys. B 25 114701

[1] Choi U S 1995 ASME FED 231 99
[2] Azmi W H, Hamid Abdul K, Usri N A, Mamat Razilman and Sharma K V 2016 Int. Comm. Heat Mass Trans. 75 13
[3] Li X K, Zou C J, Zhou L and Qi A H 2016 Int. J. Heat Mass Trans. 97 631
[4] Prabhakaran M, Manikandan S, Suganthi K S, Vinodhan V L and Rajan K S 2016 Appl. Therm. Eng. 102 329
[5] Crane L J 1970 Z. Angew Math. Phys. 21 645
[6] Nadeem S and Lee C 2012 Nanoscale Res. Lett. 7 94
[7] Nadeem S and UlHaq R J. Aerosp. Eng. 10 1061
[8] Nadeem S, Mehmood R and Akbar N S 2013 Int. J. Heat Mass Trans. 57 679
[9] Nadeem S, UlHaq R and Lee C 2012 Sci. Iranica. 19 1550
[10] Mahapatra T R and Gupta A S 2001 Acta Mech. 152 191
[11] Makinde O D 2012 Meccanica 47 1173
[12] Choi S 1995 ASME FED 66 99
[13] Makinde O D and Aziz A 2011 Int. J. Therm. Sci. 50 1326
[14] Kuznetsov A V and Nield D A 2010 Int. J. Therm. Sci. 49 243
[15] Eastman J A, Choi U S, Li S, Yu W and Thompson L J 2001 Appl. Phys. Lett. 78 718
[16] Li J F and Li Z Y 2014 Chin. Phys. B 23 047305
[17] Mostafa M, Hayat T, Pop I, Asghar S and Obaidat S 2011 Int. J. Heat Mass Trans. 54 5588
[18] Khan W A and Pop I 2010 Int. J. Heat Mass Trans. 53 2477
[19] Khan W A and Aziz A 2011 Int. J. Therm. Sci. 50 1207
[20] Ibrahim W, Shankar B and Nandeppanavar M M 2013 Int. J. Heat Mass Trans. 56 1
[21] Ishak A, Nazar R and Pop I 2007 ASME J. Heat Trans. 129 1087
[22] Ishak A, Nazar R, Arifin R and Pop I 2007 ASME J. Heat Trans. 129 1212
[23] Lok Y Y, Amin N, Campean D and Pop I 2005 Int. J. Numer. Methods Heat Fluid Flow. 15 654
[24] Ishak A, Nazar R and Pop I 2008 Comput. Math. Appl. 56 3188
[25] Zhang C L, Zheng L C, Zhang X X and Chen G 2015 Appl. Math. Model. 39 165
[26] Lin Y H, Zheng L C, Zhang X X, Ma L X and Chen G 2015 Int. J. Heat Mass Trans. 84 903
[27] Sui J Z, Zheng L C, Zhang X X and Chen G 2015 Int. J. Heat Mass Trans. 85 1023
[28] Lin Y H, Zheng L C and Zhang X X 2014 Int. J. Heat Mass Trans. 77 708
[29] Zheng L C, Zhang C L, Zhang X X and Zhang J H 2013 Journal of the Franklin Institute 350 990
[30] Raptis A and Perdikis C 1984 Methods Appl. 8 749
[31] Kumari M, Takhar H S and Nath G 1990 Waerme-Stoffuebertrag 25 331
[32] Takhar H S, Kumari M and Nath G 1993 Arch. Appl. Mech. 63 313
[33] Ali F M, Nazar R, Arifin N M and Pop I 2011 Int. J. Heat Mass Trans. 133
[34] Ali K and Ashraf M 2012 World Applied Sciences Journal 16 1615
[35] Liao S J 2003 Capman Hall/CRC Press, Boca Raton
[36] Ghotbi A R 2009 Commun. Nonlinear Sci. Num. Simulat. 14 2653
[37] Liao S J 2008 Adv. Mechan. 15 1
[38] Abbasbandy S 2006 Phys. Lett. A 360 109
[39] Nadeem S and Saleem S 2013 J. Taiwan Inst. Chem. Eng. 44 596
[40] Ahmada A, Asghar S and Alsaedi A 2015 Chin. Phys. B 24 014702
[1] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[2] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[3] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[4] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[5] Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera
Guannan Liu(刘冠楠), Dong Liu(刘冬). Chin. Phys. B, 2018, 27(5): 054401.
[6] Theoretical studies and molecular dynamics simulations on ion transport properties in nanochannels and nanopores
Ke Xiao(肖克), Dian-Jie Li(李典杰), Chen-Xu Wu(吴晨旭). Chin. Phys. B, 2018, 27(2): 024702.
[7] Performance of thermoelectric generator with graphene nanofluid cooling
Jiao-jiao Xing(邢姣娇), Zi-hua Wu(吴子华), Hua-qing Xie(谢华清), Yuan-yuan Wang(王元元), Yi-huai Li(李奕怀), Jian-hui Mao(毛建辉). Chin. Phys. B, 2017, 26(10): 104401.
[8] Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer
Yang Juan-Cheng (阳倦成), Li Feng-Chen (李凤臣), Cai Wei-Hua (蔡伟华), Zhang Hong-Na (张红娜), Yu Bo (宇波). Chin. Phys. B, 2015, 24(8): 084401.
[9] Analysis for flow of Jeffrey fluid with nanoparticles
T. Hayat, Sadia Asad, A. Alsaedi. Chin. Phys. B, 2015, 24(4): 044702.
[10] Partial slip effect on non-aligned stagnation point nanofluid over a stretching convective surface
S. Nadeem, Rashid Mehmood, Noreen Sher Akbar. Chin. Phys. B, 2015, 24(1): 014702.
[11] Flow and heat transfer of a nanofluid over a hyperbolically stretching sheet
A. Ahmad, S. Asghar, A. Alsaedi. Chin. Phys. B, 2014, 23(7): 074401.
[12] Three-dimensional magnetohydrodynamics axisymmetric stagnation flow and heat transfer due to an axisymmetric shrinking/stretching sheet with viscous dissipation and heat source/sink
Dinesh Rajotia, R. N. Jat. Chin. Phys. B, 2014, 23(7): 074701.
[13] MHD flow of nanofluids over an exponentially stretching sheet in a porous medium with convective boundary conditions
T. Hayat, M. Imtiaz, A. Alsaedi, R. Mansoor. Chin. Phys. B, 2014, 23(5): 054701.
[14] Hydromagnetic flow of a Cu–water nanofluid past a moving wedge with viscous dissipation
A. M. Salem, Galal Ismail, Rania Fathy. Chin. Phys. B, 2014, 23(4): 044402.
[15] Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid
Sadegh Khalili, Saeed Dinarvand, Reza Hosseini, Hossein Tamim, Ioan Pop. Chin. Phys. B, 2014, 23(4): 048203.
No Suggested Reading articles found!