Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 114702    DOI: 10.1088/1674-1056/25/11/114702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme

Yang Shen(沈洋)1, Hua Shen(申华)2, Kai-Xin Liu(刘凯欣)1, Pu Chen(陈 璞)1, De-Liang Zhang(张德良)3
1 State Key Laboratory for Turbulence and Complex System, College of Engineering, Peking University, Beijing 100871, China;
2 Department of Applied Mathematics and Computational Science, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia;
3 State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The three-dimensional premixed H2-O2 detonation propagation in rectangular ducts is simulated using an in-house parallel detonation code based on the second-order space-time conservation element and solution element (CE/SE) scheme. The simulation reproduces three typical cellular structures by setting appropriate cross-sectional size and initial perturbation in square tubes. As the cross-sectional size decreases, critical cellular structures transforming the rectangular or diagonal mode into the spinning mode are obtained and discussed in the perspective of phase variation as well as decreasing of triple point lines. Furthermore, multiple cellular structures are observed through examples with typical aspect ratios. Utilizing the visualization of detailed three-dimensional structures, their formation mechanism is further analyzed.
Keywords:  CE/SE scheme      three-dimensional gaseous detonation      cellular pattern  
Received:  30 March 2016      Revised:  31 May 2016      Accepted manuscript online: 
PACS:  47.40.Rs (Detonation waves)  
  82.33.Vx (Reactions in flames, combustion, and explosions)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10732010 and 10972010).
Corresponding Authors:  De-Liang Zhang     E-mail:  dlzhang@imech.ac.cn

Cite this article: 

Yang Shen(沈洋), Hua Shen(申华), Kai-Xin Liu(刘凯欣), Pu Chen(陈 璞), De-Liang Zhang(张德良) Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme 2016 Chin. Phys. B 25 114702

[1] Roy G D, Frolov S M, Borisov A A and Netzer D W 2004 Prog. Energ. Combust. 30 545
[2] Denisov Y N and Troshin Y 1959 Proc. Acad. Sci. USSR:Phys. Chem. Sec. 125 217
[3] Bennett F D 1962 Phys. Fluids 5 891
[4] White D R and Cary K H 1963 Phys. Fluids 6 749
[5] Strehlow R A 1968 Combust. Flame 12 81
[6] Strehlow R A 1969 Astronaut. Acta 14 539
[7] Strehlow R A 1970 Astronaut. Acta 15 345
[8] Hanana M, Lefebvre M H and van Tiggelen P J 2001 Shock Waves 11 77
[9] Lin W, Zhou J, Fan X H and Lin Z Y 2015 Chin. Phys. B 24 014701
[10] Taki S and Fujiwara T 1978 AIAA J. 16 73
[11] Oran E S, Weber J W, Stefaniw E I, Lefebvre M H and Anderson J D 1998 Combust. Flame 113 147
[12] Zhang Z C, John Yu S T, Hao H and Chang S C 2001 AIAA 2001-0476
[13] Montgomery C J, Cannon S M, Mawid M A and Sekar B 2002 AIAA 2002-0336
[14] Sichel M, Tonello N A, Oran E S and Jones D A 2002 Proc. Roy. Soc. Lond. A 458 49
[15] Williams D N, Bauwens L and Oran E S 1996 Symp. Combust. 26 2991
[16] Tsuboi N, Katoh S and Hayashi A K 2002 P. Combust. Inst. 29 2783
[17] Tsuboi N and Hayashi A K 2007 P. Combust. Inst. 31 2389
[18] Deledicque V and Papalexandris M V 2006 Combust. Flame 144 821
[19] Dou H S, Tsai H M, Khoo B C and Qiu J X 2008 Combust. Flame 154 644
[20] Dou H S and Khoo B C 2010 Shock Waves 20 163
[21] Wang C, Shu C W, Han W H and Ning J G 2013 Combust. Flame 160 447
[22] Wang C, Li P, Zhen G and Don W S 2016 Comput. Fluids 55 351
[23] Weng C S and Gore J P 2005 Acta Mech. Sin. 21 32
[24] Ivanov M F, Kiverin A D, Yakovenko I S and Liberman M A 2013 Int. J. Hydrogen Energ. 38 16427
[25] Cai X D, Liang J H, Deiterding R, Che Y G and Lin Z Y 2016 Int. J. Hydrogen Energ. 41 3222
[26] Huang Y, Ji H, Lian F S and Tang H 2012 Chin. Phys. Lett. 29 114701
[27] Huang Y, Ji H, Lian F S and Tang H 2014 Shock Waves 24 375
[28] Shen H, Liu K X and Zhang D L 2011 Chin. Phys. Lett. 28 124
[29] Chang S C 1995 J. Comput. Phys. 119 295
[30] Wang X Y, Chang S C and Jorgenson P C E 2000 AIAA 2000-0474
[31] Fu Z and Liu K X 2012 Chin. Phys. B 21 040202
[32] Fu Z, Liu K X and Luo N 2014 Chin. Phys. B 23 020202
[33] Chang S C, Wang X Y and Chow C Y 1999 J. Comput. Phys. 156 89
[34] Zhang M, John Yu S T and Chang S C 2004 AIAA 2004-0075
[35] Wang G, Zhang D L and Liu K X 2007 Chin. Phys. Lett. 24 3563
[36] Wang G, Zhang D L, Liu K X and Wang J T 2010 Comput. Fluids 39 168
[37] Shen H, Wang G, Liu K X and Zhang D L 2012 Int. J. Nonlinear Sci. Numer. Simul. 13 177
[1] Experimental study of the influence of annular nozzle on acoustic characteristics of detonation sound wave generated by pulse detonation engine
Yang Kang(康杨), Ning Li(李宁), Xiao-Long Huang(黄孝龙), and Chun-Sheng Weng(翁春生). Chin. Phys. B, 2022, 31(10): 104701.
[2] Studies on aluminum powder combustion in detonation environment
Jian-Xin Nie(聂建新), Run-Zhe Kan(阚润哲), Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Xue-Yong Guo(郭学永), and Shi Yan(闫石). Chin. Phys. B, 2022, 31(4): 044703.
[3] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[4] Effect of transversal concentration gradient on H2-O2 cellular detonation
Cheng Wang(王成), Yi-Xuan Wu(吴易烜), Jin Huang(黄金), Wen-Hu Han(韩文虎), Qing-Guan Song(宋清官). Chin. Phys. B, 2020, 29(6): 060503.
[5] Acoustic characteristics of pulse detonation engine sound propagating in enclosed space
Yang Kang(康杨), Ning Li(李宁), Chun-Sheng Weng(翁春生), Xiao-Long Huang(黄孝龙). Chin. Phys. B, 2020, 29(1): 014703.
[6] Structural response of aluminum core-shell particles in detonation environment
Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Jian-Xin Nie(聂建新), Hong-Bo Pei(裴红波). Chin. Phys. B, 2019, 28(8): 088201.
[7] Effects of heat loss and viscosity friction at walls on flame acceleration and deflagration to detonation transition
Jin Huang(黄金), Wenhu Han(韩文虎), Xiangyu Gao(高向宇), Cheng Wang(王成). Chin. Phys. B, 2019, 28(7): 074704.
[8] Acoustic characteristics of pulse detonation engine with ellipsoidal reflector
Yang Kang(康杨), Ning Li(李宁), Chun-Sheng Weng(翁春生), Chuan-Wei Wang(王传位). Chin. Phys. B, 2018, 27(10): 104703.
[9] Theoretical analysis on deflagration-to-detonation transition
Yun-Feng Liu(刘云峰), Huan Shen(沈欢), De-Liang Zhang(张德良), Zong-Lin Jiang(姜宗林). Chin. Phys. B, 2018, 27(8): 084703.
[10] Effect of actuating frequency on plasma assisted detonation initiation
Si-Yin Zhou(周思引), Xue-Ke Che(车学科), Di Wang(王迪), Wan-Sheng Nie(聂万胜). Chin. Phys. B, 2018, 27(2): 025208.
[11] Effect of the Al/O ratio on the Al reaction of aluminized RDX-based explosives
Qian Zhao(赵倩), Jian-Xin Nie(聂建新), Wei Zhang(张伟), Qiu-Shi Wang(王秋实), Qing-Jie Jiao(焦清介). Chin. Phys. B, 2017, 26(5): 054502.
[12] Critical deflagration waves leading to detonation onset under different boundary conditions
Lin Wei (林伟), Zhou Jin (周进), Fan Xiao-Hua (范孝华), Lin Zhi-Yong (林志勇). Chin. Phys. B, 2015, 24(1): 014701.
[13] Particle path tracking method in two-and three-dimensional continuously rotating detonation engines
Zhou Rui (周蕊), Wu Dan (武丹), Liu Yan (刘岩), Wang Jian-Ping (王健平). Chin. Phys. B, 2014, 23(12): 124704.
[14] Existence of a Hartmann layer in the peristalsis of Sisko fluid
Saleem Asghar, Tayyaba Minhas, Aamir Ali. Chin. Phys. B, 2014, 23(5): 054702.
[15] Experimental investigations of detonation initiation by hot jets in supersonic premixed flows
Han Xu (韩旭), Zhou Jin (周进), Lin Zhi-Yong (林志勇). Chin. Phys. B, 2012, 21(12): 124702.
No Suggested Reading articles found!