Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 014702    DOI: 10.1088/1674-1056/24/1/014702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Partial slip effect on non-aligned stagnation point nanofluid over a stretching convective surface

S. Nadeema, Rashid Mehmooda, Noreen Sher Akbarb
a Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan;
b DBS&H, CEME, National University of Sciences and Technology, Islamabad, Pakistan
Abstract  The present study inspects the non-aligned stagnation point nano fluid over a convective surface in the presence of partial slip. Two types of base fluids namely water and kerosene are selected with Cu nanoparticles. The governing physical problem is presented and transformed into a system of coupled nonlinear differential equations using suitable similarity transformations. These equations are then solved numerically using midpoint integration scheme along with Richardson extrapolation via Maple. Impact of relevant physical parameters on the dimensionless velocity and temperature profiles are portrayed through graphs. Physical quantities such as local skin frictions co-efficient and Nusselt numbers are tabularized. It is detected from numerical computations that kerosene-based nano fluids have better heat transfer capability compared with water-based nanofluids. Moreover it is found that water-based nanofluids offer less resistance in terms of skin friction than kerosene-based fluid. In order to authenticate our present study, the calculated results are compared with the prevailing literature and a considerable agreement is perceived for the limiting case.
Keywords:  partial slip      non-aligned stagnation point      nanofluid      stretching convective surface  
Received:  06 April 2014      Revised:  10 July 2014      Accepted manuscript online: 
PACS:  47.50.-d (Non-Newtonian fluid flows)  
  47.50.Cd (Modeling)  
  47.15.-x (Laminar flows)  
Corresponding Authors:  Rashid Mehmood     E-mail:  rmqau@hotmail.com

Cite this article: 

S. Nadeem, Rashid Mehmood, Noreen Sher Akbar Partial slip effect on non-aligned stagnation point nanofluid over a stretching convective surface 2015 Chin. Phys. B 24 014702

[1] Wang X, Xu X and Choi U S 1999 J. Therm. Phys. Heat. Trans. 13 474
[2] Altan T, Oh S and Gegel H 1983 Metal Forming Fundamentals and Applications (New York: Asm Intl)
[3] Tadmor Z and Klein I 1970 Engineering Principles of Plasticating Extrusion (New York: van Nostrand Reinhold)
[4] Choi U S 1995 ASME FED 231 99
[5] Daungthongsuk W and Wongwises S 2007 Renew Sustain Energy Rev. 11 797
[6] Wong K F V and Leon O D 2010 Adv. Mech. Eng. 2010 519659
[7] Eastman J A, Choi S U S, Li S, Yu W and Thompson L J 2007 Appl. Phys. Lett. 78 718
[8] Xuan Y M and Li Q 2003 ASME J. Heat. Transfer 125 151
[9] Wen D and Ding Y 2004 Int. J. Heat Mass Transfer 47 5181
[10] Hwang K S, Jang S P and Choi S U 2009 Int. J. Heat Mass Transfer 52 193
[11] Bachok N, Ishak A and Pop I 2011 Nanoscale Res. Lett. 6 623
[12] Andersson H I 2002 Acta Mech. 158 121
[13] Matthews M T and Hill J M 2007 J. Math Anal. Appl. 333 381
[14] Zhu J, Zheng L and Zhang X 2010 Appl. Math. Mech. 31 439
[15] Fang T, Yao S, Zhang J and Aziz A 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1831
[16] Wang C Y 2009 Nonlinear Anal. Real World Appl. 10 375
[17] Mukhopadhyay S and Gorla R S R 2012 Heat Mass Transfer 48 1773
[18] Das K 2012 Computers & Fluids 64 34
[19] Yazdi M H, Abdullah S, Hashim I and Sopian K 2011 Int. J. Heat Mass Transfer 54 3214
[20] Vajravelu K, Prasad K V, Lee J, Lee C and Pop I 2011 Int. J Therm. Sci. 50 843
[21] Maxwell-Garnett J C 1904 Philosophical Transactions of the Royal Society A 203 385
[22] Labropuolu F, Li D and Pop I 2010 Int. J. Therm. Sci. 49 1042
[23] Das K 2012 Heat Mass Transfer 48 767
[24] Nadeem S, Mehmood R and Akbar N S 2013 J. Taiwan Inst. Chem. Engnrs. 44 586
[25] Mahapatra and Gupta 2002 Heat Mass Transfer 38 517
[26] Hamad M A A, Uddin M J and Ismail A I M 2012 Int. J. Heat Mass Transer 55 1355
[27] Ascher U, Mattheij R and Russell R 1995 SIAM Classics in Appl. Math. 13 327
[28] Ascher U and Petzold L 1998 SIAM (Philadelphia)
[29] Noghrehabadi A, Ghalambaz M and Samimi A 2013 J. Comput. Appl. Research Mech. Eng. 2 45
[30] Fang T G, Tao H and Zhong Y F 2012 Chin. Phys. Lett. 29 114703
[31] Nadeem S and Abdul R 2012 Chin. Phys. Lett. 29 124701
[32] Swati M 2013 Chin. Phys. B 22 074701
[33] Swati M 2013 Chin. Phys. B 22 114702
[34] Ebaid A, El-arabawy A H and Nader Y 2013 Int. J. Diff. Eqs. 2013 865464
[35] Ebaid A and Wazwaz A M 2014 J. Comput. Theor. Nanosci. 11 178
[36] Ellahi R, Rahman S U, Nadeem S and Akbar N S 2014 J. Comput. Theor. Nanosci. 11 1156
[1] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[2] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[3] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[4] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[5] Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera
Guannan Liu(刘冠楠), Dong Liu(刘冬). Chin. Phys. B, 2018, 27(5): 054401.
[6] Theoretical studies and molecular dynamics simulations on ion transport properties in nanochannels and nanopores
Ke Xiao(肖克), Dian-Jie Li(李典杰), Chen-Xu Wu(吴晨旭). Chin. Phys. B, 2018, 27(2): 024702.
[7] Performance of thermoelectric generator with graphene nanofluid cooling
Jiao-jiao Xing(邢姣娇), Zi-hua Wu(吴子华), Hua-qing Xie(谢华清), Yuan-yuan Wang(王元元), Yi-huai Li(李奕怀), Jian-hui Mao(毛建辉). Chin. Phys. B, 2017, 26(10): 104401.
[8] Induced magnetic field stagnation point flow of nanofluid past convectively heated stretching sheet with Buoyancy effects
Tanzila Hayat, S Nadeem. Chin. Phys. B, 2016, 25(11): 114701.
[9] Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer
Yang Juan-Cheng (阳倦成), Li Feng-Chen (李凤臣), Cai Wei-Hua (蔡伟华), Zhang Hong-Na (张红娜), Yu Bo (宇波). Chin. Phys. B, 2015, 24(8): 084401.
[10] Analysis for flow of Jeffrey fluid with nanoparticles
T. Hayat, Sadia Asad, A. Alsaedi. Chin. Phys. B, 2015, 24(4): 044702.
[11] Flow and heat transfer of a nanofluid over a hyperbolically stretching sheet
A. Ahmad, S. Asghar, A. Alsaedi. Chin. Phys. B, 2014, 23(7): 074401.
[12] MHD flow of nanofluids over an exponentially stretching sheet in a porous medium with convective boundary conditions
T. Hayat, M. Imtiaz, A. Alsaedi, R. Mansoor. Chin. Phys. B, 2014, 23(5): 054701.
[13] Hydromagnetic flow of a Cu–water nanofluid past a moving wedge with viscous dissipation
A. M. Salem, Galal Ismail, Rania Fathy. Chin. Phys. B, 2014, 23(4): 044402.
[14] Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid
Sadegh Khalili, Saeed Dinarvand, Reza Hosseini, Hossein Tamim, Ioan Pop. Chin. Phys. B, 2014, 23(4): 048203.
[15] Subcooled pool boiling heat transfer in fractal nanofluids:A novel analytical model
Xiao Bo-Qi (肖波齐), Yang Yi (杨毅), Xu Xiao-Fu (许晓赋). Chin. Phys. B, 2014, 23(2): 026601.
No Suggested Reading articles found!