Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 044402    DOI: 10.1088/1674-1056/23/4/044402
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Hydromagnetic flow of a Cu–water nanofluid past a moving wedge with viscous dissipation

A. M. Salema b, Galal Ismailc, Rania Fathyc
a Department of Mathematics, Faculty of Science and Arts, Qassim University, Al-Muznib, Saudi Arabia;
b Department of Basic Science, Faculty of Computers and Informatics, Suez Canal University, Egypt;
c Department of Mathematics, Faculty of Science, Zagazig University, Egypt
Abstract  A numerical study is performed to investigate the flow and heat transfer at the surface of a permeable wedge immersed in a copper (Cu)-water-based nanofluid in the presence of magnetic field and viscous dissipation using a nanofluid model proposed by Tiwari and Das (Tiwari I K and Das M K 2007 Int. J. Heat Mass Transfer 50 2002). A similarity solution for the transformed governing equation is obtained, and those equations are solved by employing a numerical shooting technique with a fourth-order Runge-Kutta integration scheme. A comparison with previously published work is carried out and shows that they are in good agreement with each other. The effects of velocity ratio parameter <λ, solid volume fraction ø, magnetic field M, viscous dissipation Ec, and suction parameter Fw on the fluid flow and heat transfer characteristics are discussed. The unique and dual solutions for self-similar equations of the flow and heat transfer are analyzed numerically. Moreover, the range of the velocity ratio parameter for which the solution exists increases in the presence of magnetic field and suction parameter.
Keywords:  nanofluid      dual solution      magnetic field      viscous dissipation  
Received:  03 June 2013      Revised:  18 July 2013      Accepted manuscript online: 
PACS:  44.20.+b (Boundary layer heat flow)  
  44.30.+v (Heat flow in porous media)  
  47.65.-d (Magnetohydrodynamics and electrohydrodynamics)  
  47.61.-k (Micro- and nano- scale flow phenomena)  
Corresponding Authors:  A. M. Salem     E-mail:  azizsalem32@hotmail.com
About author:  44.20.+b; 44.30.+v; 47.65.-d; 47.61.-k

Cite this article: 

A. M. Salem, Galal Ismail, Rania Fathy Hydromagnetic flow of a Cu–water nanofluid past a moving wedge with viscous dissipation 2014 Chin. Phys. B 23 044402

[1] Choi S U S 1995 ASME International Mechanica Engineering Congress and Exposition, San Francsco, USA, ASME, FED 231/MD 99
[2] Wong K F V and Leone O D 2010 Applications of Nanofluids: Current and Future, Adv. Mech. Eng. 2010: 519659
[3] Khanafer K, Vafai K and Lightstone M 2003 J. Heat Mass Transfer 46 3639
[4] Maiga S E B, Palm S J, Nguyen C T, Roy G and Galanis N 2005 Int. J. Heat Fluid Flow 26 530
[5] Jou R Y and Tzeng S C 2006 Int. Commun. Heat Transfer 33 727
[6] Tiwari I K and Das M K 2007 Int. J. Heat Mass Transfer 50 2002
[7] Hang K S, Lee Ji H and Jang S P 2007 Int. J. Heat Mass Transfer 50 4003
[8] Oztop H F and Abu-Nada E 2008 Int. J. Heat Fluid Flow 29 1326
[9] Muthtamilselvan M, Kandaswamy P and Lee J 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1501
[10] Buongiorno J 2006 ASME J. Heat Transfer 128 240
[11] Kuznetsov A V and Nield D A 2010 Int. J. Therm. Sci. 49 243
[12] Abu-Nada E and Oztop H F 2009 Int. J. Heat Fluid Flow 30 669
[13] Riley N and Weidman P D 1989 SIAM J. Appl. Math. 49 1350
[14] Yacob N A, Ishak A I and Pop I 2011 Int. J. Thermal Sci. 50 133
[15] Falkner V M and Skan S W 1931 Phil. Mag. 12 865
[16] Devi A and Kandasamy R 2002 Int. Commun. Heat Mass Transfer 29 707
[17] Kandasamy R M, Azme B and Rozaini R 2012 Int. J. Thermal Sci. 65 196 Kandasamy R and Anjali Dev S P 2002 J. Energy, Heat Mass Transfer 24 175
[18] Kumari M 1998 Int. J. Engin. Sci. 36 299
[19] Bachok N, Ishak A and Pop I 2010 Int. J. Thermal Sci. 49 1663
[20] Xiaohong S W, Zheng L, Zhang X and Zhang J 2012 Chem. Engin. Sci. 78 1
[21] Hamad M A A, Pop I and Ismail A I 2011 Nonlinear Analysis: Real World Applications 12 1338
[22] Gebhart B 1962 J. Fluid Mech. 14 225
[23] Pantokratoras A 2004 Appl. Math. Model. 6 553
[24] Zueco J and Beg O A 2009 Math. Comput. Model. 50 439
[25] Muhaimin I, Kandasamy R, Hashim I and Ruhaila 2008 Int. J. Appl. Math. Statistics 13 9
[26] Chandrasekar M and Baskaran S 2007 Theor. Appl. Mech. 34 197
[27] Makinde O D 2012 Appl. Math. Mech. 33 1442
[28] Na T Y 1974 Computational Method in Engineering Boundary Value Problems (New York: Academic Press)
[29] Wang C Y 2008 Int. J. Nonlinear Mech. 43 377
[30] Bachok N, Ishak A and Pop I 2010 Phys. Lett. A 347 4075
[31] Krishnendu B 2011 Int. Commun. Heat Mass Transfer 38 917
[1] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[2] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[3] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[4] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[5] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[6] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[7] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[8] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[9] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[10] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[11] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[12] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[13] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[14] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[15] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
No Suggested Reading articles found!