Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 054701    DOI: 10.1088/1674-1056/23/5/054701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

MHD flow of nanofluids over an exponentially stretching sheet in a porous medium with convective boundary conditions

T. Hayata b, M. Imtiaza, A. Alsaedib, R. Mansoora
a Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan;
b Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Abstract  This article concentrates on the steady magnetohydrodynamic (MHD) flow of viscous nanofluid. The flow is caused by a permeable exponentially stretching surface. An incompressible fluid fills the porous space. A comparative study is made for the nanoparticles namely Copper (Cu), Silver (Ag), Alumina (Al2O3) and Titanium Oxide (TiO2). Water is treated as a base fluid. Convective type boundary conditions are employed in modeling the heat transfer process. The non-linear partial differential equations governing the flow are reduced to an ordinary differential equation by similarity transformations. The obtained equations are then solved for the development of series solutions. Convergence of the obtained series solutions is explicitly discussed. The effects of different parameters on the velocity and temperature profiles are shown and analyzed through graphs.
Keywords:  MHD nanofluid      exponentially stretching sheet      porous medium      convective boundary conditions  
Received:  29 April 2013      Revised:  26 October 2013      Accepted manuscript online: 
PACS:  47.15.-x (Laminar flows)  
  47.65.-d (Magnetohydrodynamics and electrohydrodynamics)  
Corresponding Authors:  T. Hayat     E-mail:  pensy_t@yahoo.com
About author:  47.15.-x; 47.65.-d

Cite this article: 

T. Hayat, M. Imtiaz, A. Alsaedi, R. Mansoor MHD flow of nanofluids over an exponentially stretching sheet in a porous medium with convective boundary conditions 2014 Chin. Phys. B 23 054701

[1] Crane L J 1970 Zeitschrift Fur Angewandte Mathematik Und Physik 21 645
[2] Cortell R 2006 Phys. Lett. A 357 298
[3] Bhattacharyya K, Hayat T and Alsaedi A 2013 Chin. Phys. B 22 024702
[4] Mukhopadhyay S 2013 Chin. Phys. B 22 074701
[5] Rashidi M M and Mohimanian Pour S A 2010 Nonlinear Analysis: Modelling and Control 15 83
[6] Magyari E and Keller B 1999 J. Phys. D: Appl. Phys. 32 577
[7] Partha M K, Murthy P V S N and Rajasekhar G P 2005 Heat Mass Transfer 41 360
[8] Sajid M and Hayat T 2008 Int. Comm. Heat Mass Transfer 35 347
[9] Bidin B and Nazar R 2009 Euro. J. Sci. Research 33 710
[10] Ishak A 2011 Sains Malaysiana 40 391
[11] Bachok N, Ishak A and Pop I 2012 Int. J. Heat Mass Transfer 55 8122
[12] Mandal I C and Mukhopadhyay S 2013 Ain Shams Eng. J. 4 103
[13] Bhattacharyya K 2012 J. Egy. Math. Society 20 223
[14] Elbashbeshy E M A, Emam T G and Abdelgaber K M 2012 J. Egy. Math. Society 20 215
[15] Rohni A M, Ahmad S, Ismail A I M and Pop I 2013 I. J. Ther. Sci. 64 264
[16] Mukhopadhyay S 2013 Alexandria Eng. J. 52 259
[17] Choi S U S 1995 ASME FED 231 99
[18] Buongiorno J 2006 ASME J. Heat Transfer 128 240
[19] Kuznetsov A V and Nield D A 2010 Int. J. Therm. Sci. 49 243
[20] Nield D A and Kuznetsov A V 2009 Int. J. Heat Mass Transfer 52 5792
[21] Cheng P and Minkowycz W 1977 J. Geophys. Res. 82 2040
[22] Narayana M and Sibanda P 2012 Int. J. Heat and Mass Transfer 55 7552
[23] Kang H U, Kim S H and Oh J M 2006 Exp. Heat Transfer 19 181
[24] Velagapudi V, Konijeti R K and Aduru C S K 2008 Thermal Sci. 12 27
[25] Rudyak V Y, Belkin A A and Tomilina E A 2010 Tech. Phys. Lett. 36 660
[26] Makinde O D and Aziz A 2011 Int. J. Thermal Sci. 50 1326
[27] Alsaedi A, Awais M and Hayat T 2012 Comm. Nonlinear Sci Num. Simu. 17 4210
[28] Kandasamy R, Muhaimin I, Khamis A B and Roslan R bin 2013 Int. J. Thermal Sci. 65 196
[29] Kameswaran P K, Shaw S, Sibanda P and Murthy P V S N 2013 Int. J. Heat Mass Transfer 57 465
[30] Mustafa M, Hayat T, Pop I, Asghar S and Obaidat S 2011 Int. J. Heat Mass Transfer 54 5588
[31] Nandy S K and Mahapatra T R 2013 Int. J. Heat Mass Transfer 64 1091
[32] Ibrahim W, Shankar B and Nandeppanavar M M 2013 Int. J. Heat Mass Transfer 56 1
[33] Makinde O D, Khan W A and Khan Z H 2013 Int. J. Heat Mass Transfer 62 526
[34] Ibrahim W and Shankar B 2013 Computers and Fluids 75 1
[35] Zheng L, Zhang C, Zhang X and Zhang J 2013 J. Franklin Institute 350 990
[36] Khan M S, Alam M M and Ferdows M 2013 Procedia Engineering 56 316
[37] Liao S J 2003 (Boca Raton: Chapman and Hall/CRC Press)
[38] Abbasbandy S and Shirzadi A 2011 Comm. Non-linear Sci. Num. Simul. 16 112
[39] Rashidi M M and Erfani E 2009 Comp. Phy. Comm. 180 1539
[40] Hayat T, Shehzad S A, Alsaedi A and Alhothulai M S 2012 Chin. Phys. Lett. 29 114704
[1] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[2] Erratum to “Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel”
Khaled S. Mekheimer, Soliman R. Komy, and Sara I. Abdelsalam. Chin. Phys. B, 2021, 30(9): 099901.
[3] Effects of rotation and magnetic field on nonlinear peristaltic flow of second-order fluid in an asymmetric channel through a porous medium
A. M. Abd-Alla, S. M. Abo-Dahab, H. D. El-Shahrany. Chin. Phys. B, 2013, 22(7): 074702.
[4] Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel
Khaled S. Mekheimer, Soliman R. Komy, Sara I. Abdelsalam. Chin. Phys. B, 2013, 22(12): 124702.
[5] Borehole guided waves in a non-Newtonian (Maxwell) fluid-saturated porous medium
Cui Zhi-Wen(崔志文), Liu Jin-Xia(刘金霞), Yao Gui-Jin(姚桂锦), and Wang Ke-Xie(王克协). Chin. Phys. B, 2010, 19(8): 084301.
No Suggested Reading articles found!