|
|
High-order harmonic generation of CO2 with different vibrational modes in an intense laser field |
Hui Du(杜慧), Hong-Dan Zhang(张宏丹), Jun Zhang(张军), Hai-Feng Liu(刘海凤), Xue-Fei Pan(潘雪飞), Jing Guo(郭静), Xue-Shen Liu(刘学深) |
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
Abstract We apply the strong-field Lewenstein model to demonstrate the high-order harmonic generation of CO2 with three vibrational modes (balance vibration, bending vibration, and stretching vibration) driven by an intense laser field. The results show that the intensity of harmonic spectra is sensitive to molecular vibrational modes, and the high harmonic efficiency with stretching vibrational mode is the strongest. The underlying physical mechanism of the harmonic emission can be well explained by the corresponding ionization yield and the time-frequency analysis. Finally, we demonstrate the attosecond pulse generation with different vibrational modes and an isolated attosecond pulse with a duration of about 112 as is generated.
|
Received: 23 June 2016
Revised: 18 July 2016
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575077, 11271158, and 11574117). |
Corresponding Authors:
Xue-Shen Liu
E-mail: liuxs@jlu.edu.cn
|
Cite this article:
Hui Du(杜慧), Hong-Dan Zhang(张宏丹), Jun Zhang(张军), Hai-Feng Liu(刘海凤), Xue-Fei Pan(潘雪飞), Jing Guo(郭静), Xue-Shen Liu(刘学深) High-order harmonic generation of CO2 with different vibrational modes in an intense laser field 2016 Chin. Phys. B 25 113201
|
[1] |
Li P C, Laughlin C and Chu S I 2014 Phys. Rev. A 89 023431
|
[2] |
Du H C, Wen Y Z, Wang X S and Hu B T 2014 Chin. Phys. B 23 33202
|
[3] |
Zhang B, Yuan J and Zhao Z 2014 Phys. Rev. A 90 035402
|
[4] |
Zhong H Y, Guo J, Zhang H D, Du H and Liu X S 2015 Chin. Phys. B 24 73202
|
[5] |
Lu R F, He H X, Guo Y H and Han K L 2009 J. Phys. B:At. Mol. Opt. Phys. 42 225601
|
[6] |
Zhang J, Ge X L, Wang T, Xu T T, Guo J and Liu X S 2015 Phys. Rev. A 92 013418
|
[7] |
Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
|
[8] |
Corkum P B 1993 Phys. Rev. Lett. 71 1993
|
[9] |
Schafer K J, Yang B, DiMauro L F and Kulander K C 1993 Phys. Rev. Lett. 70 1599
|
[10] |
Maurer J, Dimitrovski D, Christensen L, Madsen L B and Stapelfeldt H 2012 Phys. Rev. Lett. 109 123001
|
[11] |
Goulielmakis E, Loh Z H, Wirth A, et al. 2010 Nature 466 739
|
[12] |
Zhang C P and Miao X Y 2015 Chin. Phys. B 24 043302
|
[13] |
Pan Y, Zhao S F and Zhou X X 2013 Phys. Rev. A 87 035805
|
[14] |
Cabasse A, Hazera C, Quintard L, Cormier E, Petit S and Constant E 2016 J. Phys. B:At. Mol. Opt. Phys. 49 85601
|
[15] |
He L, Lan P, Zhang Q, Zhai C, Wang F, Shi W and Lu P 2015 Phys. Rev. A 92 043403
|
[16] |
Śpiewanowski M D and Madsen L B 2014 Phys. Rev. A 89 043407
|
[17] |
Ge X L, Wang T, Guo J and Liu X S 2014 Phys. Rev. A 89 023424
|
[18] |
Bandrauk A D, Chelkowski S and Lu H 2009 J. Phys. B:At. Mol. Opt. Phys. 42 75602
|
[19] |
Zhu X, Zhang Q, Hong W, Lan P and Lu P 2011 Opt. Express 19 437
|
[20] |
Lai X and Faria C F de M 2013 Phys. Rev. A 88 013406
|
[21] |
Petretti S, Saenz A, Castro A and Decleva P 2013 Chem. Phys. 414 45
|
[22] |
Tchitchekova D S, Lu H, Chelkowski S and Bandrauk A D 2011 J. Phys. B:At. Mol. Opt. Phys. 44 65601
|
[23] |
Qin M, Zhu X, Li Y, Zhang Q, Lan P and Lu P 2014 Phys. Rev. A 89 013410
|
[24] |
Jin C, Le A T and Lin C D 2011 Phys. Rev. A 83 053409
|
[25] |
Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P and Ivanov M Y 2009 Nature 460 972
|
[26] |
Chen Y J and Hu B 2009 J. Chem. Phys. 131 244109
|
[27] |
Peters M, Nguyen-Dang T T, Cornaggia C, Saugout S, Charron E, Keller A and Atabek O 2011 Phys. Rev. A 83 051403(R)
|
[28] |
Zhu X, Zhang Q, Hong W, Lu P and Xu Z 2011 Opt. Express 19 13723
|
[29] |
Torres R, Kajumba N, Underwood J G, Robinson J S, Baker S, Tisch J W G, de Nalda R, Bryan W A, Velotta R, Altucci C, Turcu I C E and Marangos J P 2007 Phys. Rev. Lett. 98 203007
|
[30] |
Le A T, Lucchese R R and Lin C D 2013 Phys. Rev. A 87 063406
|
[31] |
Guo J, Zhong H, Yan B, Chen Y, Jiang Y, Wang T, Shao J, Zheng C and Liu X S 2016 Phys. Rev. A 93 033806
|
[32] |
Wardlow A and Dundas D 2016 Phys. Rev. A 93 023428
|
[33] |
Chang Z 2005 Phys. Rev. A 71 023813
|
[34] |
Etches A and Madsen L B 2010 J. Phys. B:At. Mol. Opt. Phys. 43 155602
|
[35] |
Guest M F, Bush I J, Van Dam H J J, Sherwood P, Thomas J M H, Van Lenthe J H, Havenith R W A and Kendrick J 2005 Mol. Phys. 103 719
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|