Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 094206    DOI: 10.1088/1674-1056/22/9/094206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation of a continuous-wave squeezed vacuum state at 1.3 μm by employing a home-made all-solid-state laser as pump source

Zheng Yao-Hui (郑耀辉), Wu Zhi-Qiang (邬志强), Huo Mei-Ru (霍美茹), Zhou Hai-Jun (周海军)
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Abstract  We present a continuous-wave squeezed vacuum generation system at a telecommunication wavelength of 1.3 μm. By employing a home-made single-frequency Nd:YVO4 laser with dual wavelength outputs as the pump source, via an optical parameter oscillator based on periodically poled KTP, a squeezed vacuum of 6.1 dB±0.1 dB below the shot noise limit at 1342 nm is experimentally measured. This system could be utilized for demonstrating practical quantum information networks.
Keywords:  squeezed vacuum      telecommunication wavelength of 1.3 μm      optical parametric oscillator  
Received:  14 January 2013      Revised:  18 March 2013      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.65.Yj (Optical parametric oscillators and amplifiers)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB923101), the National Natural Science Foundation of China (Grant Nos. 61008001 and 61227015), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2011021003-2).
Corresponding Authors:  Zheng Yao-Hui     E-mail:  yhzheng@sxu.edu.cn

Cite this article: 

Zheng Yao-Hui (郑耀辉), Wu Zhi-Qiang (邬志强), Huo Mei-Ru (霍美茹), Zhou Hai-Jun (周海军) Generation of a continuous-wave squeezed vacuum state at 1.3 μm by employing a home-made all-solid-state laser as pump source 2013 Chin. Phys. B 22 094206

[1] Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, Mckenzie K, Ward R, Vass S, Weinstein A J and Mavalvala N 2008 Nature Phys. 4 472
[2] Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K and Schnabel R 2006 Phys. Rev. Lett. 97 011101
[3] Li X Y, Pan Q, Jing J T, Zhang J, Xie C D and Peng K C 2002 Phys. Rev. Lett. 88 047904
[4] Bowen W P, Treps N, Buchler B C, Schnabel R, Ralph T C, Bachor H A, Symul T and Lam P K 2003 Phys. Rev. A 67 032302
[5] Wang Y, Shen H, Jin X L, Su X L, Xie C D and Peng K C 2010 Opt. Express 18 6149
[6] Menicucci N C, Loock P V, Gu M, Weedbrook C, Ralph T C and Nielsen M A 2006 Phys. Rev. Lett. 97 110501
[7] Ourjoumtsev A, Tualle-Brouri R, Laurat J and Grangier P 2006 Science 312 83
[8] Yang R G, Sun H X, Zhang J X and Gao J R 2011 Chin. Phys. B 20 060305
[9] He G Q, Zhu S W, Guo H B and Zeng G H 2008 Chin. Phys. B 17 1263
[10] Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1985 Phys. Rev. Lett. 55 2409
[11] Takeno Y, Yukawa M, Yonezawa H and Furusawa A 2007 Opt. Express 15 4321
[12] Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goßler S, Danzmann K and Schnabel R 2008 Phys. Rev. Lett. 100 033602
[13] Polzik E S, Carri J and Kimble H J 1992 Appl. Phys. B 55 279
[14] Tanimura T, Akamatsu D, Yokoi Y, Furusawa A and Kozuma M 2006 Opt. Lett. 31 2344
[15] Feng J X, Tian X T, Li Y M and Zhang K S 2008 Appl. Phys. Lett. 92 221102
[16] Liu Q, Feng J X, Li H, Jiao Y C and Zhang K S 2012 Chin. Phys. B 21 104204
[17] Mehmet M, Steinlechner S, Eberle T, Vahlbruch H, Thüring A, Danzmann K and Schnabel R 2009 Opt. Lett. 34 1060
[18] Lam P K, Ralph T C, Buchler B C, Mcclelland D E, Bachor H A and Gao J 1999 J. Opt. B: Quantum Semiclass. Opt. 1 469
[19] Zheng Y H, Wang Y J, Xie C D and Peng K C 2012 IEEE J. Quantum Electron. 48 67
[20] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl. Phys. B 31 97
[1] A 45-μJ, 10-kHz, burst-mode picosecond optical parametric oscillator synchronously pumped at a second harmonic cavity
Chao Ma(马超), Ke Liu(刘可), Yong Bo(薄勇), Zhi-Min Wang(王志敏), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084206.
[2] A 515-nm laser-pumped idler-resonant femtosecond BiB3O6 optical parametric oscillator
Jinfang Yang(杨金芳), Zhaohua Wang(王兆华), Jiajun Song(宋贾俊), Renchong Lv(吕仁冲), Xianzhi Wang(王羡之), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(1): 014213.
[3] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[4] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[5] Super-resolution and super-sensitivity of entangled squeezed vacuum state using optimal detection strategy
Jiandong Zhang(张建东), Zijing Zhang(张子静), Longzhu Cen(岑龙柱), Shuo Li(李硕), Yuan Zhao(赵远), Feng Wang(王峰). Chin. Phys. B, 2017, 26(9): 094204.
[6] Generation of squeezed vacuum on cesium D2 line down to kilohertz range
Jian-Feng Tian(田剑锋), Guan-Hua Zuo(左冠华), Yu-Chi Zhang(张玉驰), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2017, 26(12): 124206.
[7] Two-dimensional atom localization induced by a squeezed vacuum
Fei Wang(王飞), Jun Xu(徐俊). Chin. Phys. B, 2016, 25(10): 104201.
[8] Tunable femtosecond near-infrared source based on a Yb:LYSO-laser-pumped optical parametric oscillator
Wen-Long Tian(田文龙), Zhao-Hua Wang(王兆华), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(1): 014207.
[9] Optimization of the idler wavelength tunable cascaded optical parametric oscillator based on chirp-assisted aperiodically poled lithium niobate crystal
Tao Chen(陈滔), Rong Shu(舒嵘), Ye Ge(葛烨), Zhuo Chen(陈卓). Chin. Phys. B, 2016, 25(1): 014209.
[10] Tunable, continuous-wave single-resonant optical parametric oscillator with output coupling for resonant wave
Xiong-Hua Zheng(郑雄桦), Bao-Fu Zhang(张宝夫), Zhong-Xing Jiao(焦中兴), Biao Wang(王彪). Chin. Phys. B, 2016, 25(1): 014208.
[11] Statistical properties of coherent photon-subtracted two-mode squeezed vacuum and its application in quantum teleportation
Zhang Guo-Ping (张国平), Zheng Kai-Min (郑凯敏), Liu Shi-You (刘世右), Hu Li-Yun (胡利云). Chin. Phys. B, 2014, 23(5): 050301.
[12] Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED
Wen Jing-Ji (文晶姬), Yeon Kyu-Hwang, Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(4): 040301.
[13] Fiber optical parametric oscillator based on photonic crystal fiber pumped with all-normal-dispersion mode-locked Yb:fiber laser
Gou Dou-Dou (苟斗斗), Yang Si-Gang (杨四刚), Zhang Lei (张磊), Wang Xiao-Jian (王小建), Chen Hong-Wei (陈宏伟), Chen Ming-Hua (陈明华), Xie Shi-Zhong (谢世钟), Chen Wei (陈伟), Luo Wen-Yong (罗文勇). Chin. Phys. B, 2014, 23(11): 114204.
[14] Coherent effect of triple-resonant optical parametric amplification inside a cavity with injection of a squeezed vacuum field
Di Ke (邸克), Zhang Jing (张靖). Chin. Phys. B, 2013, 22(9): 094205.
[15] Tunable femtosecond laser in the visible range with an intracavity frequency-doubled optical parametric oscillator
Zhu Jiang-Feng (朱江峰), Xu Liang (徐亮), Lin Qing-Feng (林清峰), Zhong Xin (钟欣), Han Hai-Nian (韩海年), Wei Zhi-Yi (魏志义). Chin. Phys. B, 2013, 22(5): 054210.
No Suggested Reading articles found!