|
|
Controlled remote preparation of an arbitrary four-qubit cluster-type state |
Wei-Lin Chen(陈维林)1, Song-Ya Ma(马松雅)1, Zhi-Guo Qu(瞿治国)2 |
1 School of Mathematics and Statistics, Henan University, Kaifeng 475004, China; 2 Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science and Technology, Nanjing 210044, China |
|
|
Abstract Two schemes are proposed to realize the controlled remote preparation of an arbitrary four-qubit cluster-type state via a partially entangled channel. We construct ingenious measurement bases at the sender's and the controller's locations, which play a decisive role in the proposed schemes. The success probabilities can reach 50% and 100%, respectively. Compared with the previous proposals, the success probabilities are independent of the coefficients of the entangled channel.
|
Received: 21 January 2016
Revised: 20 April 2016
Accepted manuscript online:
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.-a
|
(Quantum information)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61201253, 61373131, 61572246, and 61502147), PAPD and CICAEET funds. |
Corresponding Authors:
Song-Ya Ma
E-mail: masongya0829@126.com
|
Cite this article:
Wei-Lin Chen(陈维林), Song-Ya Ma(马松雅), Zhi-Guo Qu(瞿治国) Controlled remote preparation of an arbitrary four-qubit cluster-type state 2016 Chin. Phys. B 25 100304
|
[1] |
Fu Z, Sun X, Liu Q, Zhou L and Shu J 2015 IEICE Trans. Commun. 98 190
|
[2] |
Li J, Li X L, Yang B and Sun X M 2015 IEEE Trans. Inform. Foren. Sec. 10 507
|
[3] |
Ren Y, Shen J, Wang J, Han J and Lee S 2015 J. Internet Technol. 16 317
|
[4] |
Xia Z H, Wang X H, Sun X M and Wang Q 2016 IEEE Trans. Parall. Distr. 27 340
|
[5] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[6] |
Lo H K 2000 Phys. Rev. A 62 012313
|
[7] |
Pati A K 2001 Phys. Rev. A 63 014302
|
[8] |
Devetak I and Berger T 2001 Phys. Rev. Lett. 87 197901
|
[9] |
Leung D W and Shor P W 2003 Phys. Rev. Lett. 90 127905
|
[10] |
Berry D W and Sanders B C 2003 Phys. Rev. Lett. 90 057901
|
[11] |
Ye M Y, Zhang Y S and Guo G C 2004 Phys. Rev. A 69 022310
|
[12] |
Ma P C and Zhan Y B 2010 Opt. Commun. 283 2640
|
[13] |
Ma S Y, Chen X B, Luo M X, Zhang R and Yang Y X 2011 Opt. Commun. 284 4088
|
[14] |
Ma S Y and Luo M X 2014 Chin. Phys. B 23 090308
|
[15] |
Xia Y, Song J and Song H S 2007 J. Phys. B: At. Mol. Opt. Phys. 40 3719
|
[16] |
Luo M X, Chen X B, Ma S Y, Yang Y X and Niu X X 2010 Opt. Commun. 283 4796
|
[17] |
Xiao X Q, Liu J M and Zeng G H 2011 J. Phys. B: At. Mol. Opt. Phys. 44 075501
|
[18] |
Zhan Y B, Hu B L and Ma P C 2011 J. Phys. B: At. Mol. Opt. Phys. 44 095501
|
[19] |
An N B, Bich C T and Don N V 2011 J. Phys. B: At. Mol. Opt. Phys. 44 135506
|
[20] |
Hou K 2013 Quantum Inform. Process. 12 3821
|
[21] |
Wang Y and Ji X 2013 Chin. Phys. B 22 020306
|
[22] |
Chen Z F, Liu J M and Ma L 2014 Chin. Phys. B 23 020312
|
[23] |
Chen N, Quan D X, Xu F F, Yang H and Pei C X 2015 Chin. Phys. B 24 100307
|
[24] |
Ma S Y, Gao C and Luo M X 2015 Chin. Phys. B 24 110308
|
[25] |
Wang Z Y, Liu Y M, Zuo X Q and Zhang Z J 2009 Commun. Theor. Phys. 52 235
|
[26] |
Chen X B, Ma S Y, Su Y, Zhang R and Yang Y X 2012 Quantum Inform. Process. 11 1653
|
[27] |
Li Z and Zhou P 2012 Int. J. Quantum Inform. 10 1250062
|
[28] |
Liu L L and Hwang T 2014 Quantum Inform. Process. 13 1639
|
[29] |
Wang C, Zeng Z and Li X H 2015 Quantum Inform. Process. 14 1077
|
[30] |
Chen N, Quan D X, Yang H and Pei C X 2016 Quantum Inform. Process. 15 1719
|
[31] |
Peng X H, Zhu X W, Fang, X M, Feng M, Liu M L and Gao K L 2003 Phys. Lett. A 306 271
|
[32] |
Peters N A, Barreiro J T, Goggin M E, Wei T C and Kwiat P G 2005 Phys. Rev. Lett. 94 150502
|
[33] |
Xiang G Y, Li J and Guo G C 2005 Phys. Rev. A 72 012315
|
[34] |
Rosenfeld W, Berner S, Volz J, Weber M and Weinfurter H 2007 Phys. Rev. Lett. 98 050504
|
[35] |
Barreiro J T and Wei T C 2010 Phys. Rev. Lett. 105 030407
|
[36] |
Erhard M, Qassim H, Mand H, Karimi E and Boyd R W 2015 Phys. Rev. A 92 022321
|
[37] |
Munhoz P P, Roversi J A, Vidiella-Barranco A and Semião F L 2010 Phys. Rev. A 81 042305
|
[38] |
Wang X W, Shan Y G, Xia L X and Lu M W 2007 Phys. Lett. A 364 7
|
[39] |
Lau H K and Weedbrook C 2013 Phys. Rev. A 88 042313
|
[40] |
Wang Y, Su X L, Shen H, Tan A H, Xie C D and Peng K C 2010 Phys. Rev. A 81 022311
|
[41] |
Chang Y, Xu C X, Zhang S B and Yan L L 2014 Chin. Sci. Bull. 59 2541
|
[42] |
Dong P, Xue Z Y, Yang M and Cao Z L 2006 Phys. Rev. A 73 033818
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|