Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 100304    DOI: 10.1088/1674-1056/25/10/100304
GENERAL Prev   Next  

Controlled remote preparation of an arbitrary four-qubit cluster-type state

Wei-Lin Chen(陈维林)1, Song-Ya Ma(马松雅)1, Zhi-Guo Qu(瞿治国)2
1 School of Mathematics and Statistics, Henan University, Kaifeng 475004, China;
2 Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract  Two schemes are proposed to realize the controlled remote preparation of an arbitrary four-qubit cluster-type state via a partially entangled channel. We construct ingenious measurement bases at the sender's and the controller's locations, which play a decisive role in the proposed schemes. The success probabilities can reach 50% and 100%, respectively. Compared with the previous proposals, the success probabilities are independent of the coefficients of the entangled channel.
Keywords:  controlled remote state preparation      partially entangled channel      measurement basis      quantum network communication  
Received:  21 January 2016      Revised:  20 April 2016      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
  03.65.-w (Quantum mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61201253, 61373131, 61572246, and 61502147), PAPD and CICAEET funds.
Corresponding Authors:  Song-Ya Ma     E-mail:  masongya0829@126.com

Cite this article: 

Wei-Lin Chen(陈维林), Song-Ya Ma(马松雅), Zhi-Guo Qu(瞿治国) Controlled remote preparation of an arbitrary four-qubit cluster-type state 2016 Chin. Phys. B 25 100304

[1] Fu Z, Sun X, Liu Q, Zhou L and Shu J 2015 IEICE Trans. Commun. 98 190
[2] Li J, Li X L, Yang B and Sun X M 2015 IEEE Trans. Inform. Foren. Sec. 10 507
[3] Ren Y, Shen J, Wang J, Han J and Lee S 2015 J. Internet Technol. 16 317
[4] Xia Z H, Wang X H, Sun X M and Wang Q 2016 IEEE Trans. Parall. Distr. 27 340
[5] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[6] Lo H K 2000 Phys. Rev. A 62 012313
[7] Pati A K 2001 Phys. Rev. A 63 014302
[8] Devetak I and Berger T 2001 Phys. Rev. Lett. 87 197901
[9] Leung D W and Shor P W 2003 Phys. Rev. Lett. 90 127905
[10] Berry D W and Sanders B C 2003 Phys. Rev. Lett. 90 057901
[11] Ye M Y, Zhang Y S and Guo G C 2004 Phys. Rev. A 69 022310
[12] Ma P C and Zhan Y B 2010 Opt. Commun. 283 2640
[13] Ma S Y, Chen X B, Luo M X, Zhang R and Yang Y X 2011 Opt. Commun. 284 4088
[14] Ma S Y and Luo M X 2014 Chin. Phys. B 23 090308
[15] Xia Y, Song J and Song H S 2007 J. Phys. B: At. Mol. Opt. Phys. 40 3719
[16] Luo M X, Chen X B, Ma S Y, Yang Y X and Niu X X 2010 Opt. Commun. 283 4796
[17] Xiao X Q, Liu J M and Zeng G H 2011 J. Phys. B: At. Mol. Opt. Phys. 44 075501
[18] Zhan Y B, Hu B L and Ma P C 2011 J. Phys. B: At. Mol. Opt. Phys. 44 095501
[19] An N B, Bich C T and Don N V 2011 J. Phys. B: At. Mol. Opt. Phys. 44 135506
[20] Hou K 2013 Quantum Inform. Process. 12 3821
[21] Wang Y and Ji X 2013 Chin. Phys. B 22 020306
[22] Chen Z F, Liu J M and Ma L 2014 Chin. Phys. B 23 020312
[23] Chen N, Quan D X, Xu F F, Yang H and Pei C X 2015 Chin. Phys. B 24 100307
[24] Ma S Y, Gao C and Luo M X 2015 Chin. Phys. B 24 110308
[25] Wang Z Y, Liu Y M, Zuo X Q and Zhang Z J 2009 Commun. Theor. Phys. 52 235
[26] Chen X B, Ma S Y, Su Y, Zhang R and Yang Y X 2012 Quantum Inform. Process. 11 1653
[27] Li Z and Zhou P 2012 Int. J. Quantum Inform. 10 1250062
[28] Liu L L and Hwang T 2014 Quantum Inform. Process. 13 1639
[29] Wang C, Zeng Z and Li X H 2015 Quantum Inform. Process. 14 1077
[30] Chen N, Quan D X, Yang H and Pei C X 2016 Quantum Inform. Process. 15 1719
[31] Peng X H, Zhu X W, Fang, X M, Feng M, Liu M L and Gao K L 2003 Phys. Lett. A 306 271
[32] Peters N A, Barreiro J T, Goggin M E, Wei T C and Kwiat P G 2005 Phys. Rev. Lett. 94 150502
[33] Xiang G Y, Li J and Guo G C 2005 Phys. Rev. A 72 012315
[34] Rosenfeld W, Berner S, Volz J, Weber M and Weinfurter H 2007 Phys. Rev. Lett. 98 050504
[35] Barreiro J T and Wei T C 2010 Phys. Rev. Lett. 105 030407
[36] Erhard M, Qassim H, Mand H, Karimi E and Boyd R W 2015 Phys. Rev. A 92 022321
[37] Munhoz P P, Roversi J A, Vidiella-Barranco A and Semião F L 2010 Phys. Rev. A 81 042305
[38] Wang X W, Shan Y G, Xia L X and Lu M W 2007 Phys. Lett. A 364 7
[39] Lau H K and Weedbrook C 2013 Phys. Rev. A 88 042313
[40] Wang Y, Su X L, Shen H, Tan A H, Xie C D and Peng K C 2010 Phys. Rev. A 81 022311
[41] Chang Y, Xu C X, Zhang S B and Yan L L 2014 Chin. Sci. Bull. 59 2541
[42] Dong P, Xue Z Y, Yang M and Cao Z L 2006 Phys. Rev. A 73 033818
[1] Efficient scheme for remote preparation of arbitrary n-qubit equatorial states
Xin-Wei Zha(查新未), Min-Rui Wang(王敏锐), Ruo-Xu Jiang(姜若虚). Chin. Phys. B, 2020, 29(4): 040304.
[2] Efficient schemes of joint remote preparation with a passive receiver via EPR pairs
Ma Song-Ya (马松雅), Gao Cong (高聪), Luo Ming-Xing (罗明星). Chin. Phys. B, 2015, 24(11): 110308.
[3] Efficient remote preparation of arbitrary two-and three-qubit states via the χ state
Ma Song-Ya (马松雅), Luo Ming-Xing (罗明星). Chin. Phys. B, 2014, 23(9): 090308.
[4] Quantum state sharing of an arbitrary qudit state by using nonmaximally generalized GHZ state
Tao Ying-Juan(陶应娟), Tian Dong-Ping(田东平), Hu Ming-Liang(胡明亮), and Qin Meng(秦猛) . Chin. Phys. B, 2008, 17(2): 624-627.
No Suggested Reading articles found!