Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 017802    DOI: 10.1088/1674-1056/25/1/017802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

In-situ SAXS study on PET/ PMMT composites during tensile tests

Wei-Dong Cheng(程伟东)1, Xiao-Hua Gu(顾晓华)1, Xue Song(宋雪)1, Peng Zeng(曾鹏)1, Zhao-Jun Wu(吴昭君)2, Xue-Qing Xing(邢雪青)3, Guang Mo(默广)3, Zhong-Hua Wu(吴忠华)3
1. College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China;
2. Department of Practice Teaching and Equipment Management, Qiqihar University, Qiqihar 161006, China;
3. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  The nanostructures during the tensile drawing of poly(ethylene terephthalate) (PET)/hexadecyl triphenyl phosphonium bromide montmorillonite (PMMT) nanocomposites were studied by in-situ small angle x-ray scattering. For strain higher than the yield point, the scattering intensity increases dramatically due to the nucleation and growth of nanovoids and crystals. The nanovoids and crystals are significantly dependent on the heating temperature. The effective filling of PMMT in the PET matrix provokes a strong restriction to the long period. The peaks of the long period disappear gradually with the deformation strain increasing from 0% to 34%.
Keywords:  small angle x-ray scattering      nanostructure      montmorillonite      poly(ethylene terephthalate)  
Received:  16 July 2015      Revised:  24 September 2015      Accepted manuscript online: 
PACS:  78.70.Ck (X-ray scattering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1232203, U1432104, U1332107, 11305198, and 11405199), the Program for Young Teachers Scientific Research in Qiqihar University, China (Grant No. 2012k-Z02), and the Natural Science Foundation of Heilongjiang Province, China (Grant No. E201259).
Corresponding Authors:  Wei-Dong Cheng, Xiao-Hua Gu     E-mail:  57399942@qq.com;gxh216@163.com

Cite this article: 

Wei-Dong Cheng(程伟东), Xiao-Hua Gu(顾晓华), Xue Song(宋雪), Peng Zeng(曾鹏), Zhao-Jun Wu(吴昭君), Xue-Qing Xing(邢雪青), Guang Mo(默广), Zhong-Hua Wu(吴忠华) In-situ SAXS study on PET/ PMMT composites during tensile tests 2016 Chin. Phys. B 25 017802

[1] Aoyama S, Park Y T, Macosko C W, Ougizawa T and Haugstad G 2014 Langmuir 30 12950
[2] Kim S H, Park S H and Kim S C 2005 Polym. Bull. 53 285
[3] Ou C F, Ho M T and Lin J R 2003 J. Polym. Res. 10 127
[4] Wang Y M, Gao J P, Ma Y Q and Agarwal U S 2006 Compos. Part B: Eng. 37 399
[5] Chang J H and Park D K 2001 Polym. Bull. 47 191
[6] Chen Z J, Luo P and Fu Q 2009 Polym. Advan. Technol. 20 916
[7] Todorov L V, Martins C I and Viana J C 2013 J. Appl. Polym. Sci. 128 2884
[8] Haubruge H G, Jonas A M and Legras R 2004 Macromolecules 37 126
[9] Wang Z G, Xia Z Y, Yu Z Q, Chen E Q, Sue H J, Han C C and Hsiao B S 2006 Macromolecules 39 2930
[10] Fakirov S, Samokovliyski O, Stribeck N, Apostolov A A, Denchev Z, Sapoundjieva D, Evstatiev M, Meyer A and Stamm M 2001 Macromolecules 34 3314
[11] Kawakami D, Burger C, Ran S F, Avila-Orta C, Sics I, Chu B, Chiao S M, Hsiao B S and Kikutani T 2008 Macromolecules 41 2859
[12] Ivanov D A, Amalou Z and Magonov S N 2001 Macromolecules 34 8944
[13] Viana J C, Mano J F, Denchev Z Z, Oliveira M J and Cramez M C 2006 Mater. Sci. Forum 514-516 1583
[14] Li C S, Zhan M S, Huang X C and Zhou H 2012 Polym. Test. 31 938
[15] Meng L P, Xu J L, Cheng X W, Tian N, Lin Y F, Cui K P, Li J and Li L B 2014 Polym. Test. 36 110
[16] Liu G F, Wang W J, Xu J H and Dong Y H 2015 Chin. Phys. C 39 038001
[17] Liu Y, Chen D F, Wang H L, Chen N, Li D, Han B X, Rong L X, Zhao H, Wang J and Dong B Z 2002 Chin. Phys. B 11 1037
[18] Sirapanichart S, Monvisade P, Siriphannon P and Nukeaw J 2011 Iran Polym. J. 20 803
[19] Gu X H, Zeng P, Zhou J L and Xu B Y 2014 Iran Polym. J. 23 249
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[5] Morphological and structural damage investigation of nanostructured molybdenum fuzzy surface after pulsed plasma bombardment
Yu-Chuan Luo(罗玉川), Rong Yan(鄢容), Guo Pu(蒲国), Hong-Bin Wang(王宏彬), Zhi-Jun Wang(王志君), Chi Yang(杨驰), Li Yang(杨黎), Heng-Xin Guo(郭恒鑫), Zhi-Bing Zhou(周志兵), Bo Chen(陈波), Jian-Jun Chen(陈建军), Fu-Jun Gou(芶富均), Zong-Biao Ye(叶宗标), and Kun Zhang(张坤). Chin. Phys. B, 2022, 31(4): 045203.
[6] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[7] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[8] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[9] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[10] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[11] Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias
Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽). Chin. Phys. B, 2022, 31(1): 017201.
[12] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[13] Morphological effect on electrochemical performance of nanostructural CrN
Zhengwei Xiong(熊政伟), Xuemei An(安雪梅), Qian Liu(刘倩), Jiayi Zhu(朱家艺), Xiaoqiang Zhang(张小强), Chenchun Hao(郝辰春), Qiang Yang(羊强), Zhipeng Gao(高志鹏), and Meng Zhang(张盟). Chin. Phys. B, 2021, 30(12): 128201.
[14] Superchiral fields generated by nanostructures and their applications for chiral sensing
Huizhen Zhang(张慧珍), Weixuan Zhang(张蔚暄), Saisai Hou(侯赛赛), Rongyao Wang(王荣瑶), and Xiangdong Zhang(张向东). Chin. Phys. B, 2021, 30(11): 113303.
[15] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
No Suggested Reading articles found!