Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 084301    DOI: 10.1088/1674-1056/24/8/084301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effects of core position of locally resonant scatterers on low-frequency acoustic absorption in viscoelastic panel

Zhong Jie (钟杰), Wen Ji-Hong (温激鸿), Zhao Hong-Gang (赵宏刚), Yin Jian-Fei (尹剑飞), Yang Hai-Bin (杨海滨)
Vibration and Acoustics Research Group, Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China
Abstract  

Locally resonant sonic materials, due to their ability to control the propagation of low-frequency elastic waves, have become a promising option for underwater sound absorption materials. In this paper, the finite element method is used to investigate the absorption characteristics of a viscoelastic panel periodically embedded with a type of infinite-long non-coaxially cylindrical locally resonant scatterers (LRSs). The effect of the core position in the coating layer of the LRS on the low-frequency (500 Hz–3000 Hz) sound absorption property is investigated. With increasing the longitudinal core eccentricity e, there occur few changes in the absorptance at the frequencies below 1500 Hz, however, the absorptance above 1500 Hz becomes gradually better and the valid absorption (with absorptance above 0.8) frequency band (VAFB) of the viscoelastic panel becomes accordingly broader. The absorption mechanism is revealed by using the displacement field maps of the viscoelastic panel and the steel slab. The results show two typical resonance modes. One is the overall resonance mode (ORM) caused by steel backing, and the other is the core resonance mode (CRM) caused by LRS. The absorptance of the viscoelastic panel by ORM is induced mainly by the vibration of the steel slab and affected little by core position. On the contrary, with increasing the core eccentricity, the CRM shifts toward high frequency band and decouples with the ORM, leading to two separate absorption peaks and the broadened VAFB of the panel.

Keywords:  finite element method      non-coaxially cylindrical locally resonant scatterers      core position      sound absorption  
Received:  28 April 2014      Revised:  11 January 2015      Accepted manuscript online: 
PACS:  43.20.+g (General linear acoustics)  
  43.30.+m (Underwater sound)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51275519).

Corresponding Authors:  Wen Ji-Hong     E-mail:  wenjihong@vip.sina.com

Cite this article: 

Zhong Jie (钟杰), Wen Ji-Hong (温激鸿), Zhao Hong-Gang (赵宏刚), Yin Jian-Fei (尹剑飞), Yang Hai-Bin (杨海滨) Effects of core position of locally resonant scatterers on low-frequency acoustic absorption in viscoelastic panel 2015 Chin. Phys. B 24 084301

[1] Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T and Sheng P 2000 Science 289 1734
[2] Ho K M, Cheng C K, Yang Z, Zhang X X, Yang Z Y and Sheng P 2003 Appl. Phys. Lett. 83 5566
[3] Hirsekorn M 2004 Appl. Phys. Lett. 84 3364
[4] Zhao H G, Liu Y Z, Wen J H, Yu D L and Wen X S 2006 Chin. Phys. Lett. 23 2132
[5] Zhao H G, Liu Y Z, Yu D L, Wang G, Wen J H and Wen X S 2007 J. Sound Vib. 303 185
[6] Zhao H G, Liu Y Z, Yu D L, Wang G, Wen J H and Wen X S 2007 Phys. Lett. A 367 224
[7] Zhao H G, Wen J H, Yu D L and Wen X S 2010 J. Appl. Phys. 107 23519
[8] Zhao H G, Wen J H, Yang H B, Lv L M and Wen X S 2014 Appl. Acoust. 76 48
[9] Wen J H, Zhao H G, Lv L M, Yuan B, Wang G and Wen X S 2011 J. Acoust. Soc. Am. 130 1201
[10] Meng H, Wen J H, Zhao H G, Lv L M and Wen X S 2012 J. Acoust. Soc. Am. 132 69
[11] Lv L M, Wen J H, Zhao H G, Meng H and Wen X S 2012 Acta Phys. Sin. 61 214302 (in Chinese)
[12] Yang H B, Li Y, Zhao H G, Wen J H and Wen X S 2013 Acta Phys. Sin. 62 154301 (in Chinese)
[13] Lv L M, Wen J H, Zhao H G and Wen X S 2014 Acta Phys. Sin. 63 154301 (in Chinese)
[14] Yang H B, Li Y, Zhao H G, Wen J H and Wen X S 2014 Chin. Phys. B 23 104304
[15] Jiang H, Wang Y R, Zhang M L, Hu Y P, Lan D, Wu Q L and Lu H T 2010 Chin. Phys. B 19 026202
[16] Jiang H, Zhang M L, Wang Y R, Hu Y P, Lan D and Wei B 2009 Chin. Phys. Lett. 26 106202
[17] Meng H, Wen J H, Zhao H G and Wen X S 2012 J. Sound Vib. 331 4406
[18] Ivansson S M 2012 J. Acoust. Soc. Am. 131 2622
[19] Gu Y W, Luo X D and Ma H R 2009 J. Appl. Phys. 105 044903
[20] Hou L N, Hou Z L and Fu X J 2014 Acta Phys. Sin. 63 034305 (in Chinese)
[21] Jiang H, Wang Y R, Zhang M L, Hu Y P, Lan D, Zhang Y M and Wei B C 2009 Appl. Phys. Lett. 95 104101
[22] Shang C 2011 "The Absorption Mechanisms of Anechoic Tile", Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[23] Christin A, Hennion H and Decarpign J 1991 J. Acoust. Soc. Am. 90 3356
[1] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[2] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[3] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[4] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[5] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[6] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[7] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[8] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[9] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[10] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[11] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[12] Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes
Jun-Tian Tan(谭竣天), Shu-Fang Zhang(张淑芳), Ming-Can Qian(钱明灿), Hai-Jun Luo(罗海军), Fang Wu(吴芳), Xing-Ming Long(龙兴明), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2018, 27(11): 114401.
[13] Effect of ballistic electrons on ultrafast thermomechanical responses of a thin metal film
Qi-lin Xiong(熊启林), Xin Tian(田昕). Chin. Phys. B, 2017, 26(9): 096501.
[14] Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method
Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东). Chin. Phys. B, 2017, 26(8): 087703.
[15] Microwave absorption properties of Ag naowires/carbon black composites
Hai-Long Huang(黄海龙), Hui Xia(夏辉), Zhi-Bo Guo(郭智博), Yu Chen(陈羽), Hong-Jian Li(李宏建). Chin. Phys. B, 2017, 26(2): 025207.
No Suggested Reading articles found!