CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tuning the magnetic anisotropy of CoFeB grown on flexible substrates |
Zhang Hao (张昊)a, Li Yuan-Yuan (李媛媛)a, Yang Mei-Yin (杨美音)a, Zhang Bao (张保)a, Yang Guang (杨光)b, Wang Shou-Guo (王守国)b, Wang Kai-You (王开友)a |
a State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
b State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The magnetic properties of CoFeB thin films grown on flexible polyimide substrates were investigated using a magneto-optical Kerr effect magnetometer. In-plane uniaxial magnetic anisotropy was observed in the virgin state. The strain induced by bending the flexible substrate was applied on the sample to change the magnetic properties of CoFeB. The strain induced uniaxial magnetic anisotropy changed linearly with the deformation by about 8.41×104 erg/cm3 at 1% of deformation. Our results prove the magnetic properties of CoFeB grown on flexible polyimide substrate can be tuned effectively by bending, which could be important for future flexible spintronics.
|
Received: 09 February 2015
Revised: 10 April 2015
Accepted manuscript online:
|
PACS:
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.60.Jk
|
(Magnetization reversal mechanisms)
|
|
75.60.Ej
|
(Magnetization curves, hysteresis, Barkhausen and related effects)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB922201 and 2015CB921401) and the National Natural Science Foundation of China (Grant Nos. 11174272, 11474272, 11274371, 51431009, and 61225021). |
Corresponding Authors:
Wang Shou-Guo, Wang Kai-You
E-mail: sgwang@iphy.ac.cn;kywang@semi.ac.cn
|
Cite this article:
Zhang Hao (张昊), Li Yuan-Yuan (李媛媛), Yang Mei-Yin (杨美音), Zhang Bao (张保), Yang Guang (杨光), Wang Shou-Guo (王守国), Wang Kai-You (王开友) Tuning the magnetic anisotropy of CoFeB grown on flexible substrates 2015 Chin. Phys. B 24 077501
|
[1] |
Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molna'r S V, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
|
[2] |
Du C H, Adur R, Wang H L, Hauser A J, Yang F Y and Hammel P C 2013 Phys. Rev. Lett. 110 147204
|
[3] |
Li X W, Gupta A and Xiao G 1999 Appl. Phys. Lett. 75 713
|
[4] |
Lebeugle D, Mougin A, Viret M, Colson D and Ranno L 2009 Phys. Rev. Lett. 103 257601
|
[5] |
Moutis N, Suarez-Sandoval D and Niarchos D 2008 J. Magn. Magn. Mater. 320 1050
|
[6] |
Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W S, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D and Lecoeur P 2013 Nat. Commun. 4 1378
|
[7] |
Rushforth A W, Ranieri E D, Zemen J, Wunderlich J, Edmonds K W, King C S, Ahmad E, Campion R P, Foxon C T, Gallagher B L and Jungwirth T 2008 Phys. Rev. B 78 085314
|
[8] |
Li Y Y, Luo W G, Zhu L J, Zhao J H and Wang K Y 2015 J. Magn. Magn. Mater. 375 148
|
[9] |
Gaye M, Wague B M, Zighem F, Belmeguenai M, Gabor M S, Petrisor T, Tiusan C, Mercone S and Faurie D 2014 Appl. Phys. Lett. 105 62409
|
[10] |
Dai G H, Zhan Q F, Liu Y H, Yang H L, Zhang X S, Chen B and Li R W 2012 Appl. Phys. Lett. 100 122407
|
[11] |
Zhang X S, Zhan Q F, Dai G H, Liu Y W, Zuo Z H, Yang H L, Chen B and Li R W 2013 J. Appl. Phys. 113 17A901
|
[12] |
Barraud C, Deranlot C, Seneor P, Mattana R, Dlubak B, Fusil S, Bouzehouane K, Deneuve D, Petroff F and Fert A 2010 Appl. Phys. Lett 96 072502
|
[13] |
Tang Z H, Wang B M, Yang H L, Xu X Y, Liu Y W, Sun D D, Xia L X, Zhan Q F, Chen B, Tang M H, Zhou Y C, Wang J L and Li R W 2014 Appl. Phys. Lett. 105 103504
|
[14] |
Jen S U, Yao Y D, Chen Y T, Wu J M, Lee C C, Tsai T L and Chang Y C 2006 J. Appl. Phys. 99 053701
|
[15] |
Huang S X, Chen T Y and Chien C L 2008 Appl. Phys. Lett. 92 242509
|
[16] |
Liu H F, Ali S S and Han X F 2014 Chin. Phys. B 23 077501
|
[17] |
Dolhow J and Gosz M 1996 Mech. Mater. 23 311
|
[18] |
Alzate J G, Amiri P K, Yu G Q, Upadhyaya P, Katine J A, Langer J, Ocker B, Krivorotov I N and Wang K L 2014 Appl. Phys. Lett. 104 112410
|
[19] |
Camarero J, Sort J and Hoffmann A 2005 Phys. Rev. Lett. 95 057204
|
[20] |
Wang K Y, Sawicki M, Edmonds K W, Campion R P, Maat S, Foxon C T, Gallagher B L and Dietl T 2005 Phys. Rev. Lett. 95 217204
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|