Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 077305    DOI: 10.1088/1674-1056/24/7/077305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A novel physical parameter extraction approach for Schottky diodes

Wang Hao (王昊), Chen Xing (陈星), Xu Guang-Hui (许光辉), Huang Ka-Ma (黄卡玛)
College of Electronics and Information Engineering, Sichuan University, Institute of Applied Electromagnetics, Chengdu 610065, China
Abstract  Parameter extraction is an important step for circuit simulation methods that are based on physical models of semiconductor devices. A novel physical parameter extraction approach for Schottky diodes is proposed in this paper. By employing a set of analytical formulas, this approach extracts all of the necessary physical parameters of the diode chip in a unique way. It then extracts the package parasitic parameters with a curve-fitting method. To validate the proposed approach, a model HSMS-282c commercial Schottky diode is taken as an example. Its physical parameters are extracted and used to simulate the diode's electrical characteristics. The simulated results based on the extracted parameters are compared with the measurements and a good agreement is obtained, which verifies the feasibility and accuracy of the proposed approach.
Keywords:  Schottky diode      parameter extraction      device modeling  
Received:  30 October 2014      Revised:  29 January 2015      Accepted manuscript online: 
PACS:  73.40.Sx (Metal-semiconductor-metal structures)  
  85.30.Hi (Surface barrier, boundary, and point contact devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1230112).
Corresponding Authors:  Chen Xing     E-mail:  xingc@live.cn

Cite this article: 

Wang Hao (王昊), Chen Xing (陈星), Xu Guang-Hui (许光辉), Huang Ka-Ma (黄卡玛) A novel physical parameter extraction approach for Schottky diodes 2015 Chin. Phys. B 24 077305

[1] Kurata M 1982 Numerical Analysis for Semiconductor Devices (Lexington: Lexington Books)
[2] Ciampolini P, Roselli L, Stopponi G and Sorrentino R 1999 IEEE Trans. Microw. Theory Tech. 47 950
[3] Hussein Y A, El-Ghazaly S M and Goodnick S M 2005 IEEE MTT-S International, Microw. Sym. Digest, June 12-17, 2005 Long Beach, CA, USA, p. 4
[4] Ciampolini P, Roselli L and Stopponi G 1996 IEEE Microw. Guided W. 6 419
[5] Chen X, Chen J Q, Huang K M and Xu X B 2011 IEEE Trans. Electron Dev. 58 2862
[6] Chen J Q, Chen X, Liu C J and Huang K M 2012 IEEE Trans. Electron Dev. 59 3069
[7] Ouwerling G J L 1990 Solid State Electron. 33 757
[8] Ouwerling G J L, Van R F, Wentinck H M, Staalenburg J C and Crans W 1988 3rd Int. Conf. Simulation of Semicon. Devices and Processes, September 26-28, 1988 Bologna, Italy, p. 599
[9] Pirovano A, Lacaita A L, Pacelli A and Benvenuti A 2001 IEEE Trans. Electron Dev. 48 750
[10] Mikhelashvili V, Eisenstein G, Garber V, Fainleib S, Bahir G, Ritter D, Orenstein M and Peer A 1999 J. Appl. Phys. 85 6873
[11] Lyakas M, Zaharia R and Eizenberg M 1995 J. Appl. Phys. 78 5481
[12] Wang S G, Zhang Y M and Zhang Y M 2003 Chin. Phys. B 12 94
[13] Liu H X, Wu X F, Hu S G and Shi L C 2010 Chin. Phys. B 19 057303
[14] Lü Y J, Feng Z H, Gu G D, Dun S B, Yin J Y, Han T T, Sheng B C, Cai S J, Liu B and Lin Z J 2013 Chin. Phys. B 22 077102
[15] Emili G, Alimenti F, Mezranotte P, Roselli L and Sorrentino R 2000 IEEE Trans. Microw. Theory Tech. 48 2277
[16] Simon M S and Kwok K N 2007 Physics of Semiconductor Devices (3rd Edn.) (New Jersey: John Wiley & Sons)
[17] Dieter K S 2006 Semiconductor Material and Device Characterization (3rd Edn.) (New Jersey: John Wiley & Sons) pp. 157-161
[18] Aik Y T, Drakinskiy V, Yhland K, Stenarson J, Bryllert T and Stake J 2013 IEEE Trans. Microw. Theory Tech. 61 1870
[19] Stauffer L 2009 Fundamentals of Semiconductor C-V Measurements (Cleveland: Instruments Inc.)
[20] Daoud S and David L 1999 IEEE Trans. Microw. Theory Tech. 47 506
[21] Mikhelashvili V, Eisenstein G and Uzdin R 2001 Solid State Electron. 45 143
[22] Fu R, Grekov A, Peng K and Santi E 2014 IEEE Trans. Industry Appl. 50 3558
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[3] High performance lateral Schottky diodes based on quasi-degenerated Ga2O3
Yang Xu(徐阳), Xuanhu Chen(陈选虎), Liang Cheng(程亮), Fang-Fang Ren(任芳芳), Jianjun Zhou(周建军), Song Bai(柏松), Hai Lu(陆海), Shulin Gu(顾书林), Rong Zhang(张荣), Youdou Zheng(郑有炓), Jiandong Ye(叶建东). Chin. Phys. B, 2019, 28(3): 038503.
[4] Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode
Jin-Lan Li(李金岚), Yun Li(李赟), Ling Wang(汪玲), Yue Xu(徐跃), Feng Yan(闫锋), Ping Han(韩平), Xiao-Li Ji(纪小丽). Chin. Phys. B, 2019, 28(2): 027303.
[5] Investigations on mesa width design for 4H-SiC trench super junction Schottky diodes
Xue-Qian Zhong(仲雪倩), Jue Wang(王珏), Bao-Zhu Wang(王宝柱), Heng-Yu Wang(王珩宇), Qing Guo(郭清), Kuang Sheng(盛况). Chin. Phys. B, 2018, 27(8): 087102.
[6] Broadband microwave frequency doubler based on left-handed nonlinear transmission lines
Jie Huang(黄杰), Wenwen Gu(顾雯雯), Qian Zhao(赵倩). Chin. Phys. B, 2017, 26(3): 037306.
[7] Small-signal modeling of GaN HEMT switch with a new intrinsic elements extraction method
Miao Geng(耿苗), Pei-Xian Li(李培咸), Wei-Jun Luo(罗卫军), Peng-Peng Sun(孙朋朋), Rong Zhang(张蓉), Xiao-Hua Ma(马晓华). Chin. Phys. B, 2016, 25(11): 117301.
[8] Bio-inspired optimization algorithms for optical parameter extraction of dielectric materials: A comparative study
Md Ghulam Saber, Kh Arif Shahriar, Ashik Ahmed, Rakibul Hasan Sagor. Chin. Phys. B, 2016, 25(10): 105101.
[9] Characterization of vertical Au/β -Ga2O3 single-crystal Schottky photodiodes with MBE-grown high-resistivity epitaxial layer
X Z Liu(刘兴钊), C Yue(岳超), C T Xia(夏长泰), W L Zhang(张万里). Chin. Phys. B, 2016, 25(1): 017201.
[10] High performance trench MOS barrier Schottky diode with high-k gate oxide
Zhai Dong-Yuan (翟东媛), Zhu Jun (朱俊), Zhao Yi (赵毅), Cai Yin-Fei (蔡银飞), Shi Yi (施毅), Zheng You-Liao (郑有炓). Chin. Phys. B, 2015, 24(7): 077201.
[11] Electrical and dielectric properties of Al/p-Si and Al/perylene/p-Si type diodes in a wide frequency range
Ahmet Kaya, Sedat Zeyrek, Sait Eren San, Şmsettin Altindal. Chin. Phys. B, 2014, 23(1): 018506.
[12] Directly extracting both threshold voltage and series resistance from conductance-voltage curve for AlGaN/GaN Schottky diode
Lü Yuan-Jie (吕元杰), Feng Zhi-Hong (冯志红), Gu Guo-Dong (顾国栋), Dun Shao-Bo (敦少博), Yin Jia-Yun (尹甲运), Han Ting-Ting (韩婷婷), Sheng Bai-Cheng (盛百城), Cai Shu-Jun (蔡树军), Liu Bo (刘波), Lin Zhao-Jun (林兆军). Chin. Phys. B, 2013, 22(7): 077102.
[13] A monolithic distributed phase shifter based on right-handed nonlinear transmission lines at 30 GHz
Huang Jie (黄杰), Zhao Qian (赵倩), Yang Hao (杨浩), Dong Jun-Rong (董军荣), Zhang Hai-Ying (张海英). Chin. Phys. B, 2013, 22(12): 127307.
[14] Temperature-dependent characteristics of 4H–SiC junction barrier Schottky diodes
Chen Feng-Ping(陈丰平), Zhang Yu-Ming(张玉明), Zhang Yi-Men(张义门), Tang Xiao-Yan(汤晓燕), Wang Yue-Hu(王悦湖), and Chen Wen-Hao(陈文豪) . Chin. Phys. B, 2012, 21(3): 037304.
[15] Simulation study of a mixed terminal structure for 4H-SiC merged PiN/Schottky diode
Huang Jian-Hua(黄健华), Lü Hong-Liang(吕红亮), Zhang Yu-Ming(张玉明), Zhang Yi-Men(张义门),Tang Xiao-Yan(汤晓燕), Chen Feng-Ping(陈丰平), and Song Qing-Wen(宋庆文) . Chin. Phys. B, 2011, 20(11): 118401.
No Suggested Reading articles found!