Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 105101    DOI: 10.1088/1674-1056/25/10/105101
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Bio-inspired optimization algorithms for optical parameter extraction of dielectric materials: A comparative study

Md Ghulam Saber1, Kh Arif Shahriar1,2, Ashik Ahmed1, Rakibul Hasan Sagor1
1 Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Board Bazar, Gazipur 1704, Bangladesh;
2 Department of Electrical and Electronic Engineering, Northern University Bangladesh (NUB), Sher Tower, Holding No-13, Road-17, Banani, Dhaka 1213, Bangladesh
Abstract  Particle swarm optimization (PSO) and invasive weed optimization (IWO) algorithms are used for extracting the modeling parameters of materials useful for optics and photonics research community. These two bio-inspired algorithms are used here for the first time in this particular field to the best of our knowledge. The algorithms are used for modeling graphene oxide and the performances of the two are compared. Two objective functions are used for different boundary values. Root mean square (RMS) deviation is determined and compared.
Keywords:  optical parameter extraction      particle swarm optimization      invasive weed optimization      graphene oxide      optimization  
Received:  27 April 2016      Revised:  02 June 2016      Accepted manuscript online: 
PACS:  51.70.+f (Optical and dielectric properties)  
  87.55.de (Optimization)  
  02.60.Pn (Numerical optimization)  
Corresponding Authors:  Md Ghulam Saber     E-mail:  gsaber@iut-dhaka.edu

Cite this article: 

Md Ghulam Saber, Kh Arif Shahriar, Ashik Ahmed, Rakibul Hasan Sagor Bio-inspired optimization algorithms for optical parameter extraction of dielectric materials: A comparative study 2016 Chin. Phys. B 25 105101

[1] Yee K S 1966 IEEE Trans. Anten. Propag. 14 302
[2] Rakić A D, Djurišić A B, Elazar J M and Majewski M L 1998 Appl. Opt. 37 5271
[3] Pernice W H, Payne F P and Gallagher D F 2007 IEEE Trans. Anten. Propag. 55 916
[4] Kelley D F, Destan T J and Luebbers R J 2007 IEEE Trans. Anten. Propag. 55 1999
[5] Saber M G, Sagor R H and Ahmed A 2016 Silicon 8 245
[6] Sagor R H, Shahriar K A, Saber M G, Joy M M A and Sohel I H 2016 Silicon 8 251
[7] Saber M G and Sagor R H 2014 Electron. Mater. Lett. 10 267
[8] Saber M G and Sagor R H 2013 Optoelectron. Lett. 9 454
[9] Saber M G, Sagor R H, Al Noor A and Al-Amin M T 2013 13th IEEE Conference on Nanotechnology, August 5-8, 2013, Beijing, China, p. 262
[10] Clegg J and Robinson M 2012 Phys. Med. Biology 57 6227
[11] Abraham A and Das S 2010 Computational intelligence in power engineering (Heidelberg: Springer-Verlag), p. 235
[12] Angeline P J 1998 Proceedings of 7th International Conference on Evolutionary Programming, March 25-27, San Diego, California, USA, p. 601
[13] Vesterstrom J and Thomsen R 2004 IEEE Congress on Evolutionary Computation, 2004. June 19-23, 2004, Portland, Oregon, USA, p. 1980
[14] Kunz K S and Luebbers R J 1993 The finite difference time domain method for electromagnetics (Florida: CRC Press), p. 124
[15] Kenndy J and Eberhart R 1995 “Particle swarm optimization”, Proceedings of IEEE International Conference on Neural Networks, November 27-December 1, 1995, Perth, Australia, p. 1942
[16] Eberhart R C and Kennedy J 1995 Proceedings of the sixth international symposium on micromachine and human science, October 4-6, 1995, Nagoya, Japan, p. 39
[17] Mehrabian A R and Lucas C 2006 Ecological Informatics 1 355
[18] Jung I, Vaupel M, Pelton M, Piner R, Dikin D A, Stankovich S, An J and Ruoff R S 2008 J. Phys. Chem. C 112 8499
[1] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[2] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[5] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[6] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[7] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[8] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[9] Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture
Pengfei Shi(史鹏飞), Yangyang Cao(曹阳阳), Hongge Zhao(赵宏革), Renjing Gao(高仁璟), and Shutian Liu(刘书田). Chin. Phys. B, 2021, 30(9): 097806.
[10] Erratum to “Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization”
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(9): 099902.
[11] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[12] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[13] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[14] Efficient sampling for decision making in materials discovery
Yuan Tian(田原), Turab Lookman, and Dezhen Xue(薛德祯). Chin. Phys. B, 2021, 30(5): 050705.
[15] Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 036301.
No Suggested Reading articles found!