Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 077104    DOI: 10.1088/1674-1056/24/7/077104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and optical properties of lithium niobate under high pressure: A first-principles study

Sang Dan-Dan (桑丹丹)a, Wang Qing-Lin (王庆林)b, Han Chong (韩崇)a, Chen Kai (陈凯)a, Pan Yue-Wu (潘跃武)a
a Mathematics and Physical Sciences Technology, Xuzhou Institute of Technology, Xuzhou 221008, China;
b Center for High Pressure Science and Technology Advanced Research, Changchun 130012, China
Abstract  We theoretically study the structural, electronic, and optical properties of lithium niobate under pressure using the plane-wave pseudopotential density functional theory by CASTEP code. It was found that there is a phase transition from the R3c structure to the Pnma structure at a pressure of 18.7 GPa. The Pnma structure was dynamically stable according to the calculation of phonon dispersion. From the charge density distributions, there exist covalent interactions along the Nb–O bond. The hybridization between O 2p and Nb 4d orbital in the Pnma phase increases with increasing pressure, while it is not changed in the R3c phase. With increasing pressure, the average Nb–O bond length decreases and the Nb–O bond population increases, indicating the increased covalent character between Nb and O atoms under high pressure at Pnma phase, which leads to the increased hybridization between O 2p and Nb 4d orbitals. Furthermore, the optical dielectric function, refractive index, extinction coefficient, electron energy, loss and reflectivity are calculated.
Keywords:  pressure      electronic structure      optical properties      hybridization  
Received:  11 November 2014      Revised:  06 February 2015      Accepted manuscript online: 
PACS:  71.20.Ps (Other inorganic compounds)  
  74.25.Gz (Optical properties)  
Fund: Projects supported by the National Natural Science Foundation of China (Grant Nos. 11347154 and 51172194) and the Foundation of Xuzhou Institute of Technology, China (Grant No. XKY2013203).
Corresponding Authors:  Wang Qing-Lin, Han Chong     E-mail:  wangql@hpstar.ac.cn;hanchongxz@163.com

Cite this article: 

Sang Dan-Dan (桑丹丹), Wang Qing-Lin (王庆林), Han Chong (韩崇), Chen Kai (陈凯), Pan Yue-Wu (潘跃武) Electronic and optical properties of lithium niobate under high pressure: A first-principles study 2015 Chin. Phys. B 24 077104

[1] Veithen M and Ghosez P 2002 Phys. Rev. B 65 214302
[2] Xue D and He X 2006 Phys. Rev. B 73 064113
[3] Choubey R K, Sen P, Sen P K, Bhatt R, Kar S, Shukla V and Bartwal K S 2006 Opt. Mater. 28 467
[4] Beyer O, Breunig I, Kalkum F and Buse K 2006 Appl. Phys. Lett. 88 51120
[5] Abrahams S C and Bernstein J L 1967 J. Phys. Chem. Solids 28 1685
[6] Da Jornada J, Block S, Mauer F and Piermarini G 1985 J. Appl. Phys. 57 842
[7] Lin Y, Li Y, Xu Y, Lan G and Wang H 1995 J. Appl. Phys. 77 3584
[8] Mukaide T, Yagi T, Miyajima N, Kondo T, Sata N and Kikegawa T 2003 J. Appl. Phys. 93 3852
[9] Suchocki A, Paszkowicz W, Kamińka A, Durygin A, Saxena S K, Arizmendi L and Bermudez V 2006 Appl. Phys. Lett. 89 261908
[10] Nakamura K, Higuchi S and Ohnuma T 2012 J. Appl. Phys. 111 033522
[11] Li Z, An X, Cheng X, Wang X, Zhang H, Peng L and Wu W 2014 Chin. Phys. B 23 037104
[12] Feng L, Wang Z, Liu Q, Tan T and Liu Z 2012 Chin. Phys. Lett. 29 127103
[13] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[14] Vanderbilt D 1990 Phys. Rev. B 41 7892
[15] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[16] Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
[17] Francis G and Payne M 1990 J. Phys.: Condens. Matter 2 4395
[18] Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M and Prakapenka V 2009 Nature 458 182
[19] Hao A, Yang X, Wang X, Zhu Y, Liu X and Liu R 2010 J. Appl. Phys. 108 063531
[20] King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651
[21] Sharma S, Verma A S and Jindal V K 2014 Physica B: Condens. Matter 438 97
[22] Yan T 2011 Growth, Structure and Properties of High Quality LiNbO3 and LiTaO3 Crystals (Shandong University) (in Chinese)
[23] Bouhemadou A and Khenata R 2007 Comput. Mater. Sci. 39 803
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[7] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[8] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[9] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[10] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[11] Regulation of the intermittent release of giant unilamellar vesicles under osmotic pressure
Qi Zhou(周琪), Ping Wang(王平), Bei-Bei Ma(马贝贝), Zhong-Ying Jiang(蒋中英), and Tao Zhu(朱涛). Chin. Phys. B, 2022, 31(9): 098701.
[12] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[13] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[14] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!