CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Stacking fault energy, yield stress anomaly, and twinnability of Ni3Al: A first principles study |
Liu Li-Li (刘利利)a, Wu Xiao-Zhi (吴小志)a b, Wang Rui (王锐)a, Li Wei-Guo (李卫国)c, Liu Qing (刘庆)b |
a Institute for Structure and Function, Chongqing University, Chongqing 401331, China;
b College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;
c College of Aerospace Engineering, Chongqing University, Chongqing 400044, China |
|
|
Abstract Using first principles calculations combined with the quasiharmonic approach, we study the effects of temperature on the elastic constants, generalized stacking fault energies, and generalized planar fault energies of Ni3Al. The antiphase boundary energies, complex stacking fault energies, superlattice intrinsic stacking fault energies, and twinning energies decrease slightly with temperature. Temperature dependent anomalous yield stress of Ni3Al is predicted by the energy-based criterion based on elastic anisotropy and antiphase boundary energies. It is found that p increases with temperature and this can give a more accurate description of the anomalous yield stress in Ni3Al. Furthermore, the predicted twinnablity of Ni3Al is also decreasing with temperature.
|
Received: 07 January 2015
Revised: 01 February 2015
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.15.Nc
|
(Total energy and cohesive energy calculations)
|
|
71.20.Be
|
(Transition metals and alloys)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104361 and 11304403) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. CQDXWL2014003 and CDJZR14328801). |
Corresponding Authors:
Wu Xiao-Zhi, Liu Qing
E-mail: xiaozhiwu@cqu.edu.cn;qingliu@cqu.edu.cn
|
Cite this article:
Liu Li-Li (刘利利), Wu Xiao-Zhi (吴小志), Wang Rui (王锐), Li Wei-Guo (李卫国), Liu Qing (刘庆) Stacking fault energy, yield stress anomaly, and twinnability of Ni3Al: A first principles study 2015 Chin. Phys. B 24 077102
|
[1] |
Jiang C, Sordelet D J and Gleeson B 2006 Acta Mater. 54 1147
|
[2] |
Chandran M and Sondhi S K 2011 Model. Simul. Mater. Sci. Eng. 19 025008
|
[3] |
Yu X X and Wang C Y 2012 Mater. Sci. Eng. A 539 38
|
[4] |
Wen Y F, Sun J and Huang J 2012 Trans. Nonferrous Met. Soc. China 22 661
|
[5] |
Yang X Y and Hu W Y 2014 J. Appl. Phys. 115 153507
|
[6] |
Kumar K, Sankarasubramanian R and Waghmare U V 2015 Comput. Mater. Sci. 97 26
|
[7] |
Manga V R, Shang S L, Wang W Y, Wang Y, Liang J, Crespi V H and Liu Z K 2015 Acta Mater. 82 287
|
[8] |
Demura M, Golberg D and Hirano T 2007 Intermetallics 15 1322
|
[9] |
Yang H, Li Z H and Huang M S 2014 Modelling Simul. Mater. Sci. Eng. 22 085009
|
[10] |
Paidar V, Pope D P and Vitek V 1984 Acta Metall. 32 435
|
[11] |
Umakoshi Y, Pope D P and Vitek V 1984 Acta Metall. 32 449
|
[12] |
Yoo M H 1986 Scripta Metall. 20 915
|
[13] |
Liu J B, Johnson D D and Smirnov A V 2005 Acta Mater. 53 3601
|
[14] |
Lü B L, Chen G Q, Qu S, Su H and Zhou W L 2013 Mater. Sci. Eng. A 565 317
|
[15] |
Tichy G, Vitke V and Pope D P 1986 Philos. Mag. A 53 467
|
[16] |
Mryasov O N, Gornostyrev Yu N, van Schilfgaarde M and Freeman A J 2002 Acta Mater. 50 4545
|
[17] |
Paidar V, Pope D P and Yamaguchi H 1981 Scripta Metall. 15 1029
|
[18] |
Veyssiere P, Yoo M H, Horton J A and Liu C T 1989 Philos. Mag. Lett. 59 61
|
[19] |
Morris D G 1992 Scr. Metall. Mater. 26 733
|
[20] |
Yu H F, Jones I P and Smallman R E 1994 Philos. Mag. A 70 951
|
[21] |
Kruml T, Conforto E, Piccolo B L, Caillard D and Martin J L 2002 Acta Mater. 50 5091
|
[22] |
Liu Z G, Wang C Y and Yu T 2014 Chin. Phys. B 23 110208
|
[23] |
Li C X, Dang S H, Wang L P, Zhang C L and Han P D 2014 Chin. Phys. B 23 117102
|
[24] |
An M R, Song H Y and Su J F 2012 Chin. Phys. B 21 106202
|
[25] |
Ardakani A, Mclean M and Shollock B A 1999 Acta Mater. 47 2593
|
[26] |
Kakehi K 1999 Scripta Mater. 41 461
|
[27] |
Viswanathan G B, Peter M S, Deborah H W and Michael J M 2005 Mater. Sci. Eng. A 400-401 489
|
[28] |
Viswanathan G B, Karthikeyan S, Sarosi P M, Unocic R R and Mills M J 2006 Philos. Mag. 86 4823
|
[29] |
Xie H X, Wang C Y, Yu T and Du J P 2009 Chin. Phys. B 18 251
|
[30] |
van Swygenhoven H, Derlet P M and Froseth A G 2004 Nat. Mater. 3 399
|
[31] |
Tadmor E B and Bernstein N 2004 J. Mech. Phys. Solids 52 2507
|
[32] |
Siegel D J 2005 Appl. Phys. Lett. 87 121901
|
[33] |
Kibey S, Liu J B, Johnson D D and Sehitoglu H 2006 Appl. Phys. Lett. 89 191911
|
[34] |
Kibey S, Liu J B, Johnson D D and Sehitoglu H 2009 Appl. Phys. Lett. 91 181916
|
[35] |
Muzyk M, Pakiela Z and Kurzydlowski K J 2011 Scripta Mater. 64 916
|
[36] |
Li B Q, Sui M L and Mao S X 2011 J. Mater. Sci. Technol. 27 97
|
[37] |
Wen Y F and Sun J 2013 Scripta Mater. 68 759
|
[38] |
Shang S L, Wang W Y, Zhou B C, Wang Y, Darling K A, Kecskes L J, Mathaudhu S N and Liu Z K 2014 Acta Mater. 67 168
|
[39] |
Wang J, Sehitoglu H and Maier H J 2014 Int. J. Plasticity 54 247
|
[40] |
Cai T, Zhang Z J, Zhang P, Yang J B and Zhang Z F 2014 J. Appl. Phys. 116 163512
|
[41] |
Wu J, Wen L, Tang B Y, Peng L M and Ding W J 2011 Solid State Sci. 13 120
|
[42] |
Wang J and Sehitoglu H 2014 Intermetallics 52 20
|
[43] |
Moriarty J A, Belak J F, Rudd R E, Sőerlind P, Streitz F H and Yang L H 2002 J. Phys.: Condens. Matter 14 2825
|
[44] |
Wang Y, Liu Z K and Chen L Q 2004 Acta Mater. 52 2665
|
[45] |
Sha X W and Cohen R E 2010 Phys. Rev. B 81 095105
|
[46] |
Wasserman E, Stixrude L and Cohen R E 1996 Phys. Rev. B 53 8296
|
[47] |
Vinet P, Rose J H, Ferrante J and Smith J R 1989 J. Phys.: Condens. Matter 1 1941
|
[48] |
Wang Y, Wang J J, Zhang H, Manga V R, Shang S L, Chen L Q and Liu Z K 2010 J. Phys.: Condens. Matter 22 225404
|
[49] |
Shang S L, Zhang H, Wang Y and Liu Z K 2010 J. Phys.: Condens. Matter 22 375403
|
[50] |
Swenson C A 1968 J. Phys. Chem. Solids 29 1337
|
[51] |
Wasserman E F 1990 Ferromagnetic Materials (Bushow K H J and Wohlfarth E P eds.) (Amsterdam: Elsevier Science) p. 238
|
[52] |
Anderson O L and Isaak D G 1995 Mineral Physics and Crystallography: A Handbook of Physical Constants (Ahrens T J ed.) (Washington, DC: The American Geophysical Union) p. 64
|
[53] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[54] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[55] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[56] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[57] |
Blöchl P E, Jepsen O and Andersen O K 1976 Phys. Rev. B 13 5188
|
[58] |
Togo A, Chaput L, Tanaka I and Hug G 2010 Phys. Rev. B 81 174301
|
[59] |
Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
|
[60] |
Togo A 2009 Phonopy
|
[61] |
Kresse G, Marsman M and Furthmüller J VASP the guide
|
[62] |
Liu L L, Wang R, Wu X Z, Gan L Y and Wei Q Y 2014 Comput. Mater. Sci. 88 124
|
[63] |
Wu X Z, Liu L L, Wang R and Liu Q 2014 Chin. Phys. B 23 066104
|
[64] |
Stassis C, Kayser F X, Loong C K and Arch D 1981 Phys. Rev. B 24 3048
|
[65] |
Gülsern O and Cohen R E 2002 Phys. Rev. B 65 064103
|
[66] |
Wang Y J and Wang C Y 2009 Appl. Phys. Lett. 94 261909
|
[67] |
Kim D E, Shang S L and Liu Z K 2010 Intermetallics 18 1163
|
[68] |
Osburn J E, Mehl M J and Klein B M 1991 Phys. Rev. B 43 1805
|
[69] |
Hou H, Wen Z Q, Zhao Y H, Fu L, Wang N and Han P D 2014 Intermetallics 44 110
|
[70] |
Wu Q and Li S S 2012 Comput. Mater. Sci. 53 436
|
[71] |
Boucetta S, Chihi T, Chebouli B and Fatmi M 2010 Mater. Sci. Poland 28 347
|
[72] |
Sot R and Kurzydlowski K J 2005 Mater. Sci. Poland 23 587
|
[73] |
Ravelo R, Aguilar J, Baskes M, Angelo J E, Fultz B and Holian B L 1998 Phys. Rev. B 57 862
|
[74] |
Yu S, Wang C Y, Yu T and Cai J 2007 Physica B 396 138
|
[75] |
Simmons G and Wang H 1971 Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (Cambridge, MA: MIT Press)
|
[76] |
Yasuda H, Takasugi T and Koiwa M 1992 Acta Metall Mater 40 381
|
[77] |
Tanaka K and Koiwa M 1996 Intermetallics 4 S29
|
[78] |
Prikhodko S V, Carnes J D, Isaak D G, Yang H and Ardell A J 1999 Metall. Mater. Trans. A 30 2403
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|