Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 077102    DOI: 10.1088/1674-1056/24/7/077102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Stacking fault energy, yield stress anomaly, and twinnability of Ni3Al: A first principles study

Liu Li-Li (刘利利)a, Wu Xiao-Zhi (吴小志)a b, Wang Rui (王锐)a, Li Wei-Guo (李卫国)c, Liu Qing (刘庆)b
a Institute for Structure and Function, Chongqing University, Chongqing 401331, China;
b College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;
c College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
Abstract  

Using first principles calculations combined with the quasiharmonic approach, we study the effects of temperature on the elastic constants, generalized stacking fault energies, and generalized planar fault energies of Ni3Al. The antiphase boundary energies, complex stacking fault energies, superlattice intrinsic stacking fault energies, and twinning energies decrease slightly with temperature. Temperature dependent anomalous yield stress of Ni3Al is predicted by the energy-based criterion based on elastic anisotropy and antiphase boundary energies. It is found that p increases with temperature and this can give a more accurate description of the anomalous yield stress in Ni3Al. Furthermore, the predicted twinnablity of Ni3Al is also decreasing with temperature.

Keywords:  Ni3Al      stacking fault energy      anomalous yield stress      twinnability  
Received:  07 January 2015      Revised:  01 February 2015      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  71.20.Be (Transition metals and alloys)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11104361 and 11304403) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. CQDXWL2014003 and CDJZR14328801).

Corresponding Authors:  Wu Xiao-Zhi, Liu Qing     E-mail:  xiaozhiwu@cqu.edu.cn;qingliu@cqu.edu.cn

Cite this article: 

Liu Li-Li (刘利利), Wu Xiao-Zhi (吴小志), Wang Rui (王锐), Li Wei-Guo (李卫国), Liu Qing (刘庆) Stacking fault energy, yield stress anomaly, and twinnability of Ni3Al: A first principles study 2015 Chin. Phys. B 24 077102

[1] Jiang C, Sordelet D J and Gleeson B 2006 Acta Mater. 54 1147
[2] Chandran M and Sondhi S K 2011 Model. Simul. Mater. Sci. Eng. 19 025008
[3] Yu X X and Wang C Y 2012 Mater. Sci. Eng. A 539 38
[4] Wen Y F, Sun J and Huang J 2012 Trans. Nonferrous Met. Soc. China 22 661
[5] Yang X Y and Hu W Y 2014 J. Appl. Phys. 115 153507
[6] Kumar K, Sankarasubramanian R and Waghmare U V 2015 Comput. Mater. Sci. 97 26
[7] Manga V R, Shang S L, Wang W Y, Wang Y, Liang J, Crespi V H and Liu Z K 2015 Acta Mater. 82 287
[8] Demura M, Golberg D and Hirano T 2007 Intermetallics 15 1322
[9] Yang H, Li Z H and Huang M S 2014 Modelling Simul. Mater. Sci. Eng. 22 085009
[10] Paidar V, Pope D P and Vitek V 1984 Acta Metall. 32 435
[11] Umakoshi Y, Pope D P and Vitek V 1984 Acta Metall. 32 449
[12] Yoo M H 1986 Scripta Metall. 20 915
[13] Liu J B, Johnson D D and Smirnov A V 2005 Acta Mater. 53 3601
[14] Lü B L, Chen G Q, Qu S, Su H and Zhou W L 2013 Mater. Sci. Eng. A 565 317
[15] Tichy G, Vitke V and Pope D P 1986 Philos. Mag. A 53 467
[16] Mryasov O N, Gornostyrev Yu N, van Schilfgaarde M and Freeman A J 2002 Acta Mater. 50 4545
[17] Paidar V, Pope D P and Yamaguchi H 1981 Scripta Metall. 15 1029
[18] Veyssiere P, Yoo M H, Horton J A and Liu C T 1989 Philos. Mag. Lett. 59 61
[19] Morris D G 1992 Scr. Metall. Mater. 26 733
[20] Yu H F, Jones I P and Smallman R E 1994 Philos. Mag. A 70 951
[21] Kruml T, Conforto E, Piccolo B L, Caillard D and Martin J L 2002 Acta Mater. 50 5091
[22] Liu Z G, Wang C Y and Yu T 2014 Chin. Phys. B 23 110208
[23] Li C X, Dang S H, Wang L P, Zhang C L and Han P D 2014 Chin. Phys. B 23 117102
[24] An M R, Song H Y and Su J F 2012 Chin. Phys. B 21 106202
[25] Ardakani A, Mclean M and Shollock B A 1999 Acta Mater. 47 2593
[26] Kakehi K 1999 Scripta Mater. 41 461
[27] Viswanathan G B, Peter M S, Deborah H W and Michael J M 2005 Mater. Sci. Eng. A 400-401 489
[28] Viswanathan G B, Karthikeyan S, Sarosi P M, Unocic R R and Mills M J 2006 Philos. Mag. 86 4823
[29] Xie H X, Wang C Y, Yu T and Du J P 2009 Chin. Phys. B 18 251
[30] van Swygenhoven H, Derlet P M and Froseth A G 2004 Nat. Mater. 3 399
[31] Tadmor E B and Bernstein N 2004 J. Mech. Phys. Solids 52 2507
[32] Siegel D J 2005 Appl. Phys. Lett. 87 121901
[33] Kibey S, Liu J B, Johnson D D and Sehitoglu H 2006 Appl. Phys. Lett. 89 191911
[34] Kibey S, Liu J B, Johnson D D and Sehitoglu H 2009 Appl. Phys. Lett. 91 181916
[35] Muzyk M, Pakiela Z and Kurzydlowski K J 2011 Scripta Mater. 64 916
[36] Li B Q, Sui M L and Mao S X 2011 J. Mater. Sci. Technol. 27 97
[37] Wen Y F and Sun J 2013 Scripta Mater. 68 759
[38] Shang S L, Wang W Y, Zhou B C, Wang Y, Darling K A, Kecskes L J, Mathaudhu S N and Liu Z K 2014 Acta Mater. 67 168
[39] Wang J, Sehitoglu H and Maier H J 2014 Int. J. Plasticity 54 247
[40] Cai T, Zhang Z J, Zhang P, Yang J B and Zhang Z F 2014 J. Appl. Phys. 116 163512
[41] Wu J, Wen L, Tang B Y, Peng L M and Ding W J 2011 Solid State Sci. 13 120
[42] Wang J and Sehitoglu H 2014 Intermetallics 52 20
[43] Moriarty J A, Belak J F, Rudd R E, Sőerlind P, Streitz F H and Yang L H 2002 J. Phys.: Condens. Matter 14 2825
[44] Wang Y, Liu Z K and Chen L Q 2004 Acta Mater. 52 2665
[45] Sha X W and Cohen R E 2010 Phys. Rev. B 81 095105
[46] Wasserman E, Stixrude L and Cohen R E 1996 Phys. Rev. B 53 8296
[47] Vinet P, Rose J H, Ferrante J and Smith J R 1989 J. Phys.: Condens. Matter 1 1941
[48] Wang Y, Wang J J, Zhang H, Manga V R, Shang S L, Chen L Q and Liu Z K 2010 J. Phys.: Condens. Matter 22 225404
[49] Shang S L, Zhang H, Wang Y and Liu Z K 2010 J. Phys.: Condens. Matter 22 375403
[50] Swenson C A 1968 J. Phys. Chem. Solids 29 1337
[51] Wasserman E F 1990 Ferromagnetic Materials (Bushow K H J and Wohlfarth E P eds.) (Amsterdam: Elsevier Science) p. 238
[52] Anderson O L and Isaak D G 1995 Mineral Physics and Crystallography: A Handbook of Physical Constants (Ahrens T J ed.) (Washington, DC: The American Geophysical Union) p. 64
[53] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[54] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[55] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[56] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[57] Blöchl P E, Jepsen O and Andersen O K 1976 Phys. Rev. B 13 5188
[58] Togo A, Chaput L, Tanaka I and Hug G 2010 Phys. Rev. B 81 174301
[59] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[60] Togo A 2009 Phonopy
[61] Kresse G, Marsman M and Furthmüller J VASP the guide
[62] Liu L L, Wang R, Wu X Z, Gan L Y and Wei Q Y 2014 Comput. Mater. Sci. 88 124
[63] Wu X Z, Liu L L, Wang R and Liu Q 2014 Chin. Phys. B 23 066104
[64] Stassis C, Kayser F X, Loong C K and Arch D 1981 Phys. Rev. B 24 3048
[65] Gülsern O and Cohen R E 2002 Phys. Rev. B 65 064103
[66] Wang Y J and Wang C Y 2009 Appl. Phys. Lett. 94 261909
[67] Kim D E, Shang S L and Liu Z K 2010 Intermetallics 18 1163
[68] Osburn J E, Mehl M J and Klein B M 1991 Phys. Rev. B 43 1805
[69] Hou H, Wen Z Q, Zhao Y H, Fu L, Wang N and Han P D 2014 Intermetallics 44 110
[70] Wu Q and Li S S 2012 Comput. Mater. Sci. 53 436
[71] Boucetta S, Chihi T, Chebouli B and Fatmi M 2010 Mater. Sci. Poland 28 347
[72] Sot R and Kurzydlowski K J 2005 Mater. Sci. Poland 23 587
[73] Ravelo R, Aguilar J, Baskes M, Angelo J E, Fultz B and Holian B L 1998 Phys. Rev. B 57 862
[74] Yu S, Wang C Y, Yu T and Cai J 2007 Physica B 396 138
[75] Simmons G and Wang H 1971 Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (Cambridge, MA: MIT Press)
[76] Yasuda H, Takasugi T and Koiwa M 1992 Acta Metall Mater 40 381
[77] Tanaka K and Koiwa M 1996 Intermetallics 4 S29
[78] Prikhodko S V, Carnes J D, Isaak D G, Yang H and Ardell A J 1999 Metall. Mater. Trans. A 30 2403
[1] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[2] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[3] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[4] Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026401.
[5] First-principles study of solute diffusion in Ni3Al
Shaohua Liu(刘少华), Zi Li(李孜), Chongyu Wang(王崇愚). Chin. Phys. B, 2017, 26(9): 093102.
[6] First-principles studies of effects of interstitial boron and carbon on the structural, elastic, and electronic properties of Ni solution and Ni3Al intermetallics
Meng-Li Huang(黄梦礼), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2016, 25(10): 107104.
[7] The generalized planar fault energy, ductility, and twinnability of Al and Al-RE (RE=Sc, Y, Dy, Tb, Nd) at different temperatures:A first-principles study
Wu Xiao-Zhi (吴小志), Liu Li-Li (刘利利), Wang Rui (王锐), Liu Qing (刘庆). Chin. Phys. B, 2014, 23(6): 066104.
[8] First-principles study of the effects of selected interstitial atoms on the generalized stacking fault energies, strength, and ductility of Ni
Li Chun-Xia (李春霞), Dang Sui-Hu (党随虎), Wang Li-Ping (王丽萍), Zhang Cai-Li (张彩丽), Han Pei-De (韩培德). Chin. Phys. B, 2014, 23(11): 117102.
[9] First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers
Wang Yun-Jiang(王云江) and Wang Chong-Yu(王崇愚). Chin. Phys. B, 2009, 18(10): 4339-4348.
[10] Stacking fault energy of cryogenic austenitic steels
Dai Qi-Xun (戴起勋), Wang An-Dong (王安东), Cheng Xiao-Nong (程晓农), Luo Xin-Min (罗新民). Chin. Phys. B, 2002, 11(6): 596-600.
No Suggested Reading articles found!