Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 077101    DOI: 10.1088/1674-1056/24/7/077101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structure-dependent metal—insulator transition in one-dimensional Hubbard superlattice

Zhang Liang-Liang (张亮亮)a, Huang Jin (黄金)a, Duan Cheng-Bo (段丞博)b, Wang Wei-Zhong (王为忠)a
a Department of Physics, Wuhan University, Wuhan 430072, China;
b College of Science, Chang'an University, Xi'an 710064, China
Abstract  We investigate the charge and spin gaps, and the spin structure in half-filled one-dimensional Hubbard superlattices with one repulsive site and L0 free sites per unit cell. For odd L0, it is correlated metal at the particle–hole symmetric point, and then turns into band insulator beyond this point. For even L0, the system has a Mott insulator phase around the particle–hole symmetric point and undergoes a metal–insulator transition with on-site repulsion U increasing. For large U, there exists a multiperiodic spin structure, which results from the ferromagnetic (antiferromagnetic) correlation between the nearest neighboring repulsive sites for odd (even) L0.
Keywords:  metal-insulator transition      spin-density-wave      Hubbard superlattice  
Received:  12 November 2014      Revised:  28 January 2015      Accepted manuscript online: 
PACS:  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  73.21.Cd (Superlattices)  
  75.30.Fv (Spin-density waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50573059 and 10874132).
Corresponding Authors:  Zhang Liang-Liang     E-mail:  dlzhang@whu.edu.cn

Cite this article: 

Zhang Liang-Liang (张亮亮), Huang Jin (黄金), Duan Cheng-Bo (段丞博), Wang Wei-Zhong (王为忠) Structure-dependent metal—insulator transition in one-dimensional Hubbard superlattice 2015 Chin. Phys. B 24 077101

[1] Dagotto E 1994 Rev. Mod. Phys. 66 763
[2] Hubbard J 1963 Proc. R. Soc. A-Math. Phys. Eng. Sci. 276 238
[3] Lieb E H and Wu F Y 1968 Phys. Rev. Lett. 20 1445
[4] Hubbard J and Torrance J B 1981 Phys. Rev. Lett. 47 1750
[5] Nagaosa N and Takimoto J 1986 J. Phys. Soc. Jpn. 55 2735
[6] Egami T, Ishihara S and Tachiki M 1993 Science 261 1307
[7] Ishihara S, Egami T and Tachiki M 1994 Phys. Rev. B 49 8944
[8] Fabrizio M, Gogolin A O and Nersesyan A A 1999 Phys. Rev. Lett. 83 2014
[9] Torio M E, Aligia A A and Ceccatto H A 2001 Phys. Rev. B 64 121105
[10] Zhang Y Z, Wu C Q and Lin H Q 2003 Phys. Rev. B 67 205109
[11] Lou J, Qin S, Xiang T, Chen C, Tian G S and Su Z 2003 Phys. Rev. B 68 045110
[12] Manmana S R, Meden V, Noack R M and Schönhammer K 2004 Phys. Rev. B 70 155115
[13] Otsuka H and Nakamura M 2005 Phys. Rev. B 71 155105
[14] Tincani L, Noack R M and Baeriswyl D 2009 Phys. Rev. B 79 165109
[15] Go A and Jeon G S 2011 Phys. Rev. B 84 195102
[16] Zhu X and Tong P Q 2008 Chin. Phys. B 17 1623
[17] Kakashvili P and Japaridze G I 2004 J. Phys. Condens. Matter 16 5815
[18] Chowdhury J, Karmakar S N and Bhattacharyya B 2007 Phys. Rev. B 75 235117
[19] França V V and Capelle K 2010 Phys. Rev. B 82 134405
[20] Heinrich B and Cochran J 1993 Adv. Phys. 42 523
[21] Heinrich B and Bland J A C 2004 Ultrathin Magnetic Structures II: Measurement Techniques and Novel Magnetic Properties (Vol. 2) (Berlin: Springer)
[22] Ajayan P M, Schadler L S and Braun P V 2003 Nanocomposite Science and Technology (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA)
[23] Tsu R 2005 Superlattice to Nanoelectronics (Oxford: Elsevier)
[24] Paiva T and dos Santos R R 1996 Phys. Rev. Lett. 76 1126
[25] Paiva T and dos Santos R R 1998 Phys. Rev. B 58 9607
[26] Paiva T and dos Santos R R 2000 Phys. Rev. B 62 7007
[27] Malvezzi A L, Paiva T and dos Santos R R 2002 Phys. Rev. B 66 064430
[28] Paiva T and dos Santos R R 2002 Phys. Rev. B 65 153101
[29] Malvezzi A L, Paiva T and dos Santos R R 2006 Phys. Rev. B 73 193407
[30] Mendes-Santos T, Paiva T and dos Santos R R 2013 Phys. Rev. B 87 214407
[31] Góra D, Roóciszewski K J and Oleó A M 1998 J. Phys. Condens. Matter 10 4755
[32] Silva M F, Lima N A, Malvezzi A L and Capelle K 2005 Phys. Rev. B 71 125130
[33] França V V, Vieira D and Capelle K 2012 New J. Phys. 14 073021
[34] Capelle K and Campo Jr V L 2013 Phys. Rep. 528 91
[35] Duan C B and Wang W Z 2010 J. Phys. Condens. Matter 22 345601
[36] White S R 1992 Phys. Rev. Lett. 69 2863
[37] White S R 1993 Phys. Rev. B 48 10345
[38] Dukelsky J and Pittel S 2004 Rep. Prog. Phys. 67 513
[39] Schollwöck U 2005 Rev. Mod. Phys. 77 259
[40] Hallberg K A 2006 Adv. Phys. 55 477
[41] Frahm H and Korepin V E 1990 Phys. Rev. B 42 10553
[42] Dag S, Tongay S, Yildirim T, Durgun E, Senger R T, Fong C Y and Ciraci S 2005 Phys. Rev. B 72 155444
[43] Durgun E, Senger R T, Mehrez H, Dag S and Ciraci S 2006 Europhys. Lett. 73 642
[1] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[2] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[3] Manipulating metal-insulator transitions of VO2 films via embedding Ag nanonet arrays
Zhangyang Zhou(周章洋), Jia Yang(杨佳), Yi Liu(刘艺), Zhipeng Gao(高志鹏), Linhong Cao(曹林洪), Leiming Fang(房雷鸣), Hongliang He(贺红亮), and Zhengwei Xiong(熊政伟). Chin. Phys. B, 2021, 30(12): 126803.
[4] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[5] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[6] Quantum critical duality in two-dimensional Dirac semimetals
Jiang Zhou(周江), Ya-Jie Wu(吴亚杰), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2019, 28(1): 017402.
[7] Electron localization in ultrathin films of three-dimensional topological insulators
Jian Liao(廖剑), Gang Shi(史刚), Nan Liu(刘楠), Yongqing Li(李永庆). Chin. Phys. B, 2016, 25(11): 117201.
[8] Disorder effects in topological states: Brief review of the recent developments
Binglan Wu(吴冰兰), Juntao Song(宋俊涛), Jiaojiao Zhou(周娇娇), Hua Jiang(江华). Chin. Phys. B, 2016, 25(11): 117311.
[9] Emergent reversible giant electroresistance in spacially confined La0.325Pr0.3Ca0.375MnO3 wires
Cui Li-Min (崔丽敏), Li Jie (李洁), Wang Jia (王佳), Zhang Yu (张玉), Zheng Dong-Ning (郑东宁). Chin. Phys. B, 2014, 23(9): 097103.
[10] Fabrication of VO2 thin film by rapid thermal annealing in oxygen atmosphere and its metal-insulator phase transition properties
Liang Ji-Ran (梁继然), Wu Mai-Jun (吴劢君), Hu Ming (胡明), Liu Jian (刘剑), Zhu Nai-Wei (朱乃伟), Xia Xiao-Xu (夏晓旭), Chen Hong-Da (陈弘达). Chin. Phys. B, 2014, 23(7): 076801.
[11] Structural, magnetic, electronic, and elastic properties of face-centered cubic PuHx (x = 2, 3):GGA (LSDA) + U + SO
Guo Yong (郭咏), Ai Juan-Juan (艾娟娟), Gao Tao (高涛), Ao Bing-Yun (敖冰云). Chin. Phys. B, 2013, 22(5): 057103.
[12] Emergent phenomena in manganites under spatial confinement
Shen Jian (沈健), T. Z. Ward, L. F. Yin. Chin. Phys. B, 2013, 22(1): 017501.
[13] Electron-correlation-induced band renormalization and Mott transition in Ca1-xSrxVO3
Wang Guang-Tao(王广涛), Zhang Min-Ping(张敏平), and Zheng Li-Hua(郑立花) . Chin. Phys. B, 2011, 20(9): 097102.
[14] Single-particle spectral function of the Hubbard chain: frustration induced
Wang Jing(王竞) and Enrico Arrigoni. Chin. Phys. B, 2009, 18(6): 2475-2480.
No Suggested Reading articles found!