CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Structure-dependent metal—insulator transition in one-dimensional Hubbard superlattice |
Zhang Liang-Liang (张亮亮)a, Huang Jin (黄金)a, Duan Cheng-Bo (段丞博)b, Wang Wei-Zhong (王为忠)a |
a Department of Physics, Wuhan University, Wuhan 430072, China; b College of Science, Chang'an University, Xi'an 710064, China |
|
|
Abstract We investigate the charge and spin gaps, and the spin structure in half-filled one-dimensional Hubbard superlattices with one repulsive site and L0 free sites per unit cell. For odd L0, it is correlated metal at the particle–hole symmetric point, and then turns into band insulator beyond this point. For even L0, the system has a Mott insulator phase around the particle–hole symmetric point and undergoes a metal–insulator transition with on-site repulsion U increasing. For large U, there exists a multiperiodic spin structure, which results from the ferromagnetic (antiferromagnetic) correlation between the nearest neighboring repulsive sites for odd (even) L0.
|
Received: 12 November 2014
Revised: 28 January 2015
Accepted manuscript online:
|
PACS:
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
73.21.Cd
|
(Superlattices)
|
|
75.30.Fv
|
(Spin-density waves)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50573059 and 10874132). |
Corresponding Authors:
Zhang Liang-Liang
E-mail: dlzhang@whu.edu.cn
|
Cite this article:
Zhang Liang-Liang (张亮亮), Huang Jin (黄金), Duan Cheng-Bo (段丞博), Wang Wei-Zhong (王为忠) Structure-dependent metal—insulator transition in one-dimensional Hubbard superlattice 2015 Chin. Phys. B 24 077101
|
[1] |
Dagotto E 1994 Rev. Mod. Phys. 66 763
|
[2] |
Hubbard J 1963 Proc. R. Soc. A-Math. Phys. Eng. Sci. 276 238
|
[3] |
Lieb E H and Wu F Y 1968 Phys. Rev. Lett. 20 1445
|
[4] |
Hubbard J and Torrance J B 1981 Phys. Rev. Lett. 47 1750
|
[5] |
Nagaosa N and Takimoto J 1986 J. Phys. Soc. Jpn. 55 2735
|
[6] |
Egami T, Ishihara S and Tachiki M 1993 Science 261 1307
|
[7] |
Ishihara S, Egami T and Tachiki M 1994 Phys. Rev. B 49 8944
|
[8] |
Fabrizio M, Gogolin A O and Nersesyan A A 1999 Phys. Rev. Lett. 83 2014
|
[9] |
Torio M E, Aligia A A and Ceccatto H A 2001 Phys. Rev. B 64 121105
|
[10] |
Zhang Y Z, Wu C Q and Lin H Q 2003 Phys. Rev. B 67 205109
|
[11] |
Lou J, Qin S, Xiang T, Chen C, Tian G S and Su Z 2003 Phys. Rev. B 68 045110
|
[12] |
Manmana S R, Meden V, Noack R M and Schönhammer K 2004 Phys. Rev. B 70 155115
|
[13] |
Otsuka H and Nakamura M 2005 Phys. Rev. B 71 155105
|
[14] |
Tincani L, Noack R M and Baeriswyl D 2009 Phys. Rev. B 79 165109
|
[15] |
Go A and Jeon G S 2011 Phys. Rev. B 84 195102
|
[16] |
Zhu X and Tong P Q 2008 Chin. Phys. B 17 1623
|
[17] |
Kakashvili P and Japaridze G I 2004 J. Phys. Condens. Matter 16 5815
|
[18] |
Chowdhury J, Karmakar S N and Bhattacharyya B 2007 Phys. Rev. B 75 235117
|
[19] |
França V V and Capelle K 2010 Phys. Rev. B 82 134405
|
[20] |
Heinrich B and Cochran J 1993 Adv. Phys. 42 523
|
[21] |
Heinrich B and Bland J A C 2004 Ultrathin Magnetic Structures II: Measurement Techniques and Novel Magnetic Properties (Vol. 2) (Berlin: Springer)
|
[22] |
Ajayan P M, Schadler L S and Braun P V 2003 Nanocomposite Science and Technology (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA)
|
[23] |
Tsu R 2005 Superlattice to Nanoelectronics (Oxford: Elsevier)
|
[24] |
Paiva T and dos Santos R R 1996 Phys. Rev. Lett. 76 1126
|
[25] |
Paiva T and dos Santos R R 1998 Phys. Rev. B 58 9607
|
[26] |
Paiva T and dos Santos R R 2000 Phys. Rev. B 62 7007
|
[27] |
Malvezzi A L, Paiva T and dos Santos R R 2002 Phys. Rev. B 66 064430
|
[28] |
Paiva T and dos Santos R R 2002 Phys. Rev. B 65 153101
|
[29] |
Malvezzi A L, Paiva T and dos Santos R R 2006 Phys. Rev. B 73 193407
|
[30] |
Mendes-Santos T, Paiva T and dos Santos R R 2013 Phys. Rev. B 87 214407
|
[31] |
Góra D, Roóciszewski K J and Oleó A M 1998 J. Phys. Condens. Matter 10 4755
|
[32] |
Silva M F, Lima N A, Malvezzi A L and Capelle K 2005 Phys. Rev. B 71 125130
|
[33] |
França V V, Vieira D and Capelle K 2012 New J. Phys. 14 073021
|
[34] |
Capelle K and Campo Jr V L 2013 Phys. Rep. 528 91
|
[35] |
Duan C B and Wang W Z 2010 J. Phys. Condens. Matter 22 345601
|
[36] |
White S R 1992 Phys. Rev. Lett. 69 2863
|
[37] |
White S R 1993 Phys. Rev. B 48 10345
|
[38] |
Dukelsky J and Pittel S 2004 Rep. Prog. Phys. 67 513
|
[39] |
Schollwöck U 2005 Rev. Mod. Phys. 77 259
|
[40] |
Hallberg K A 2006 Adv. Phys. 55 477
|
[41] |
Frahm H and Korepin V E 1990 Phys. Rev. B 42 10553
|
[42] |
Dag S, Tongay S, Yildirim T, Durgun E, Senger R T, Fong C Y and Ciraci S 2005 Phys. Rev. B 72 155444
|
[43] |
Durgun E, Senger R T, Mehrez H, Dag S and Ciraci S 2006 Europhys. Lett. 73 642
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|