Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 074206    DOI: 10.1088/1674-1056/24/7/074206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Absorption enhancement and sensing properties of Ag diamond nanoantenna arrays

Yuan Yu-Yang (袁宇阳)a, Yuan Zong-Heng (袁纵横)a b, Li Xiao-Nan (李骁男)a, Wu Jun (吴军)a, Zhang Wen-Tao (张文涛)a, Ye Song (叶松)a
a School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China;
b School of Information Engineering, Guizhou Minzu University, Guiyang 550025, China
Abstract  Noble metal nanoantenna could effectively enhance light absorption and increase detection sensitivity. In this paper, we propose a periodic Ag diamond nanoantenna array to increase the absorption of thin-film solar cells and to improve the detection sensitivity via localized surface plasmon resonance. The effect of nanoantenna arrays on the absorption enhancement is theoretically investigated using the finite difference time domain (FDTD) method with manipulating the spectral response by geometrical parameters of nanoantennas. A maximum absorption enhancement factor of 1.51 has been achieved in this study. In addition, the relation between resonant wavelength (intensity reflectivity) and refractive index is discussed in detail. When detecting the environmental index using resonant wavelengths, a maximum detection sensitivity of about 837 nm/RIU (refractive index unit) and a resolution of about 10-3 RIU can be achieved. Moreover, when using the reflectivity, the sensitivity can be as high as 0.93 AU/RIU. Furthermore, we also have theoretically studied the effectiveness of nanoantennas in distinguishing chemical reagents, solution concentrations, and solution allocation ratios by detecting refractive index. From the results presented in this paper, we conclude that this work might be useful for biosensor detection and other types of detections.
Keywords:  surface plasmon resonance      nanoantenna      finite difference time domain (FDTD)      sensor  
Received:  19 August 2014      Revised:  14 January 2015      Accepted manuscript online: 
PACS:  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
Fund: Project supported by the International Scientific and Technological Cooperation Projects of Guizhou Province, China (Grant No. 20117035) and the Program for Innovative Research Team of Guilin University of Electronic Technology, China (Grant No. IRTGUET).
Corresponding Authors:  Yuan Zong-Heng     E-mail:  yuanzongheng@sina.com

Cite this article: 

Yuan Yu-Yang (袁宇阳), Yuan Zong-Heng (袁纵横), Li Xiao-Nan (李骁男), Wu Jun (吴军), Zhang Wen-Tao (张文涛), Ye Song (叶松) Absorption enhancement and sensing properties of Ag diamond nanoantenna arrays 2015 Chin. Phys. B 24 074206

[1] Wollschläger J, Nicolaus A, Wiltshire K H and Metfies K 2014 J. Plankton Res. 36 695
[2] Zhang Z Y, Wang L N, Hu H F, Li K W, Ma X P and Song G F 2013 Chin. Phys. B 22 014213
[3] Hajizadegan M, Ahmadi V and Sakhdari M 2013 J. Lightw. Tech. 31 1877
[4] Chen F, Cheng J, Dai S, Xu Y and Yu Q 2013 Mater. Res. Bull. 48 4667
[5] Wu P, Xu W, Li L L, Lu T C and Wu W D 2014 Chin. Phys. B 23 107807
[6] Tok R U and Şendur K 2013 Opt. Lett. 38 3119
[7] Catchpole K R and Polman A 2008 Opt. Express 16 21793
[8] Chopra1 K L, Paulson P D and Dutta V 2004 Progress in Photovoltaics: Research and Applications 12 69
[9] Li Z Y, Liu J and Zhong X L 2014 Chin. Phys. B 23 047306
[10] Prasad M R, Deena S, Rajesh C, Pandit V K and Pathan H M 2013 J. Renew. Sustain. Ener. 5 031615
[11] Cao J, Tong S and Grattan K T V 2014 Sensor. Actuat. B 195 332
[12] Liu F, Wong M M K, Chiu S K, Lin H, Ho J C and Pang S W 2014 Biosens. Bioelectron. 55 141
[13] Wei A, Zhu T and Zhu Q Z 2014 J. Quant. Spectro. Rad. Trans. 132 28
[14] Manera M G and Rella R 2013 Sensor. Actuat. B 179 175
[15] Feng D J, Liu G X, Zhang M S and Jia D F 2013 Chin. Opt. Lett. 11 110607
[16] Hamidi Z S, Chumiran S H, Mohamad A, Shariff N N M, Ibrahim Z A, Radzin N, Hamzan N, Anim N M and Alias A N 2013 Am. J. Mod. Phys. 2 58
[17] Neumann L, Van't Oever J and Van Hulst N F 2013 Nano Lett. 13 5070
[18] Jalilvand M, Li X, Kowalewski J and Zwick T 2014 Electron. Lett. 50 244
[19] Cetin A E, Yanik A A, Yilmaz C, Somu S, Busnaina A and Altug H 2011 Appl. Phys. Lett. 98 111110
[20] Palik E D 1985 Handbook of Optical Constants of Solids (San Diego: Academic Press) p. 555
[21] http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html
[22] Tu M H, Sun T and Grattan K T V 2012 Sensor. Actuat. B 164 43
[23] Lee K S and Mostafa A 2006 J. Phys. Chem. B 110 19220
[24] Sun Y G and Xia Y N 2002 Anal. Chem. 74 5297
[25] Larsson E M, Alegret J, Käll M and Sutherland D S 2007 Nano Lett. 7 1256
[26] Bukasov R, Ali T A, Nordlander P and Shumaker-Parry J S 2010 ACS Nano 4 6639
[27] Tu H E, Tong S and Kenneth T G 2013 Sensor. J. IEEE 132013 2192
[28] Verellen N, Van Dorpe P, Huang C, Lodewijks K, Vandenbosch G A, Lagae L and Moshchalkov V V 2011 Nano Lett. 11 391
[29] Dondapati S K, Sau T K, Hrelescu C, Klar T A, Stefani F D and Feldmann J 2010 ACS Nano 4 6318
[30] Refractive Index Concentration Tables (Extreme Networks, 2012)
[31] Ye D N 1965 Chin. Sci. Bull. 9 816
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[6] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[7] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[8] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[9] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[10] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[11] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[12] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[13] Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor
Ji-Yao Du(都继瑶), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(4): 047701.
[14] Finite element simulation of Love wave sensor for the detection of volatile organic gases
Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫). Chin. Phys. B, 2022, 31(3): 030701.
[15] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
No Suggested Reading articles found!