INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Linear-fitting-based similarity coefficient map for tissue dissimilarity analysis in T2*-w magnetic resonance imaging |
Yu Shao-De (余绍德)a b, Wu Shi-Bin (伍世宾)a b, Wang Hao-Yu (王浩宇)c, Wei Xin-Hua (魏新华)d, Chen Xin (陈鑫)d, Pan Wan-Long (潘万龙)e, Hu Jianif, Xie Yao-Qin (谢耀钦)a |
a Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; b University of Chinese Academy of Sciences, Beijing 100049, China; c Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100049, China; d Department of Radiology, Guangzhou First Hospital, Guangzhou 510080, China; e Institute of Medical Imaging, North Sichuan Medical University, Nanchong 637007, China; f Department of Radiology, Wayne State University, Detroit 48201, USA |
|
|
Abstract Similarity coefficient mapping (SCM) aims to improve the morphological evaluation of T2* weighted magnetic resonance imaging (T2*-w MRI). However, how to interpret the generated SCM map is still pending. Moreover, is it probable to extract tissue dissimilarity messages based on the theory behind SCM? The primary purpose of this paper is to address these two questions. First, the theory of SCM was interpreted from the perspective of linear fitting. Then, a term was embedded for tissue dissimilarity information. Finally, our method was validated with sixteen human brain image series from multi-echo T2*-w MRI. Generated maps were investigated from signal-to-noise ratio (SNR) and perceived visual quality, and then interpreted from intra- and inter-tissue intensity. Experimental results show that both perceptibility of anatomical structures and tissue contrast are improved. More importantly, tissue similarity or dissimilarity can be quantified and cross-validated from pixel intensity analysis. This method benefits image enhancement, tissue classification, malformation detection and morphological evaluation.
|
Received: 03 April 2015
Revised: 04 August 2015
Accepted manuscript online:
|
PACS:
|
87.61.-c
|
(Magnetic resonance imaging)
|
|
87.57.C-
|
(Image quality)
|
|
02.10.Ud
|
(Linear algebra)
|
|
Fund: Project supported in part by the National High Technology Research and Development Program of China (Grant Nos. 2015AA043203 and 2012AA02A604), the National Natural Science Foundation of China (Grant Nos. 81171402, 61471349, and 81501463), the Innovative Research Team Program of Guangdong Province, China (Grant No. 2011S013), the Science and Technological Program for Higher Education, Science and Research, and Health Care Institutions of Guangdong Province, China (Grant No. 2011108101001), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030310360), the Fundamental Research Program of Shenzhen City, China (Grant No. JCYJ20140417113430639), and Beijing Center for Mathematics and Information Interdisciplinary Sciences, China. |
Corresponding Authors:
Xie Yao-Qin
E-mail: yq.xie@siat.ac.cn
|
Cite this article:
Yu Shao-De (余绍德), Wu Shi-Bin (伍世宾), Wang Hao-Yu (王浩宇), Wei Xin-Hua (魏新华), Chen Xin (陈鑫), Pan Wan-Long (潘万龙), Hu Jiani, Xie Yao-Qin (谢耀钦) Linear-fitting-based similarity coefficient map for tissue dissimilarity analysis in T2*-w magnetic resonance imaging 2015 Chin. Phys. B 24 128711
|
[1] |
Lucas-Quesada F A, Sinha U and Sinha S 1996 Magn. Reson. Imaging 6 753
|
[2] |
Wiart M, Rognin N, Berthezene Y, Nighoghossian N, Froment J C and Baskurt A 2001 Magn. Reson. Med. 45 261
|
[3] |
Rogowska J, Preston K Jr, Hunter G J, Hamberg L M, Kwong K K, Salonen O and Wolf G L 1995 IEEE Trans. Med. Imaging 14 480
|
[4] |
Bandettini P A, Jesmanowicz A, Wong E C and Hyde J S 1993 Magn. Reson. Med. 30 161
|
[5] |
Friston K, Jezzard P and Turner R 1994 Hum. Brain Mapp. 1 153
|
[6] |
Wang H Y, Hu J, Xie Y Q, Chen J, Yu A, Wei X H, Dai Y M, Li M, Bao S L and Haacke E M 2013 Chin. Phys. B 22 038702
|
[7] |
Yu S D, Wu S B and Xie Y Q 2013 Comput. Math. Method M. 2013 202309
|
[8] |
Thireou T, Kontaxakis G, Strauss L G, Dimitrakopoulou-Strauss A, Pavlopoulos S and Santos A 2005 Med. Biol. Eng. Comput. 43 23
|
[9] |
Zhu F, Rodriguez G D, Carpenter T, Atkinson M and Wardlaw J 2013 IEEE J. Biomed. Health Inform. 17 950
|
[10] |
Haacke E M, Li M and Juvvigunta F 2013 Magn. Reson. Imaging 31 481
|
[11] |
Lo E, Rogowska J, Bogorodzki P, Trocha M, Matsumoto K, Saffran B and Wolf G 1996 J. Cerebr. Blood. F. Met. 16 60
|
[12] |
Boudraa A O, Behloul F, Janier M, Canet E, Champier J, Roux J P and Revel D 2001 Comput. Biol. Med. 31 133
|
[13] |
Bai M, Hu K and Tang Y 2011 Chin. Phys. B 20 128902
|
[14] |
Yu S D, Zhang R, Wu S B, Hu J and Xie Y Q 2013 Biomed. Eng. Online 12 102
|
[15] |
Chavhan G B, Babyn P S, Thomas B, Shroff M M and Haacke E M 2009 Radiographics 29 1433
|
[16] |
Andersen A H, Gash D M and Avison M J 1999 Magn. Reson. Imaging 17 795
|
[17] |
Baumgartner R, Ryner L, Richter W, Summers R, Jarmasz M and Somorjai R 2000 Magn. Reson. Imaging 18 89
|
[18] |
Faes L, Nollo G, Kirchner M, Olivetti E, Gaita F, Riccardi R and Antolini R 2001 Med. Biol. Eng. Comput. 39 656
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|